GNN论文笔记1-A Comprehensive Survey on Graph Nerual Networks
GSP(Graph Signal Processing)基础
为下面说明的方便,这里先对GSP(Graph Signal Processing)的基础知识做简要的整理:
图信号处理,即处理定义在图上(节点,邻接节点,邻接矩阵等图论知识)的信号,信号所在的域是非规则的。天然适于用作多节点传感器网络的信号处理和融合决策,此处感谢我的师姐张国玉、冯国玉和刘冠男在图域信号处理领域的前期研究,为我的科研学习打下了良好的基础。
更多知识可参见知乎文章 GNN 万字长文带你入门GCN,文章给出了GSP和GNN的相关入门知识的合集,值得反复阅读。
为了减少随机噪声影响,假定当前节点的值是由当前节点的值与其他节点的均值得到的,则该矩阵方程可以写为
Y
=
X
+
1
N
(
n
)
∑
n
∈
N
(
n
)
X
n
Y=X+ \frac{1}{\N(n)}\sum_{n\in \N(n)} X_n
Y=X+N(n)1n∈N(n)∑Xn
或
Y
=
X
+
A
X
i
,
i
∈
U
(
i
)
Y=X+A X_i, i \in U(i)
Y=X+AXi,i∈U(i)
其中,
Y
Y
Y代表处理后节点值,
X
X
X是当前节点实际数值 ,
N
(
n
)
\N (n)
N(n)表示与当前节点相邻的节点集合,
U
(
i
)
U(i)
U(i)表示所有节点,
X
n
X_n
Xn是相邻节点的数值,
A
A
A代表邻接矩阵。
上述处理方法还可以进一步加权和无偏化处理
根据距离加权矩阵:
Y
=
X
+
W
X
i
Y=X+WX_i
Y=X+WXi
为了构造无偏估计量,还可以将加权矩阵的权重归一化写成:
Y
=
1
2
(
X
+
D
−
1
W
X
i
)
Y=\dfrac{1}{2}(X+D^{-1}WX_i)
Y=21(X+D−1WXi)
其中,
D
D
D 是一个对角矩阵,用于归一化,对角线上的元素值为L邻接矩阵
W
W
W (不加权)对应一行的元素之和。
根据图论知识,我们可以知道这个归一化矩阵
D
D
D即为度矩阵。有了度矩阵和邻接矩阵。我们可以定义图的拉普拉斯矩阵
L
=
D
−
W
L=D-W
L=D−W 其中,
L
L
L就是图的拉普拉斯矩阵,
W
W
W是考虑权值的邻接矩阵。
归一化后的拉普拉斯矩阵可以写为:
L
N
=
D
−
1
2
(
D
−
W
)
D
−
1
2
L_N=D^{\frac{-1}{2} } (D-W) D^{\frac{-1}{2}}
LN=D2−1(D−W)D2−1
得到拉普拉斯矩阵之后即可对其进行谱分解,该过程与矩阵的特征分解过程相同。(此处将省去矩阵的特征值分解的具体过程,只给出拉普拉斯谱矩阵的几点性质,我们可以根据谱分解后的性质构造新的特征量)
1.拉普拉斯矩阵的特征值都大于等于零,归一化的拉普拉斯矩阵的特征值区间为 [0, 2];
2.由于拉普拉斯矩阵以每行(列)元素之和为零,因此拉普拉斯矩阵的至少有一个特征值为 0,对应的特征向量
u
0
=
[
1
,
1
,
…
,
1
]
T
/
(
N
)
u_0=[1,1,\ldots,1]^T/ \sqrt(N)
u0=[1,1,…,1]T/(N) ,且满足
L
u
0
=
0
u
0
Lu_0=0u_0
Lu0=0u0;
3.如果有 n 个特征值为 0,则表示图有 n 个子图相互无连接;
L
L
L
4.特征值的总和为矩阵的迹,对于归一化的拉普拉斯矩阵,如果没有孤立节点或子图,其特征值为 N。
如此,以多传感器节点为例进行图域信号处理时,可以将多传感器看作图中节点,以传感器之间的通信关系和局部平均或加权平均距离确定边和邻接矩阵、度矩阵,构造归一化拉普拉斯矩阵,然后进行谱分解。传统的GCN输入到这个位置即可作为输入了。
如何根据以上性质构造新的特征提取量,是这里存疑的问题
这里给出课题组之前的图映射方法:
1.计算待识别信号的循环谱
2.做循环谱的归一化和量化处理,对不同的循环频率
α
\alpha
α, 映射到不同的图,得到图集
N
\N
N。即图集
N
\N
N的数量等于循环频率数量。
3.对图集做去掉空图处理,对剩下的图求邻接矩阵集
A
A
A
4.对
A
A
A 提取次对角线上的非零元,形成行索引,以此做为特征库
I
\ I
I。
5.以测试信号特征和标准特征库之间的汉明距离作为分类的依据。
其中,**得到特征库的方法如下 **
1.提取
A
A
A的次对角线上元素并取模
2.将元素按照降序排列,写出对应的行标号
3.如果在次对角线排序中有两个或多个元素的模值相等,分两种情况。
4.构造特征集
I
I
I
下面给出几种图神经网络的结构说明和特点
RecGNNs(递归图神经网络)
介绍该网络的文章参考如下,笔者将在阅读相关文献后给出几篇文章的说明
(1) The graph neural network model
(2) Graph echo state networks
(3) Gated graph sequence neural networks
(4) Learning steady-states of iterative algorithms over graphs
网络结构
主要思想
假设当前节点和邻居不断地进行信息交换,直到达到均衡状态