“私车公用”下 事故责任承担

“私车公用”即使用个人车辆用于公司业务,此时如发生交通事故,则责任由谁承担,是否可享受工伤待遇?

交通事故为侵权案件,以责任大小作为赔偿依据,一般认定销售接送客户属于职务行为,其产生的侵权责任由公司承担,与使用网约车情形的具体责任划分如下(为简化问题,仅考虑员工车辆主责情形)

受伤方

私车

网约车

员工

工伤

医疗费由网约车平台承担,员工仍可享受其它工伤保险待遇

客户/第三方

车险赔付后,公司承担剩余部分的责任,公司赔偿后可向员工追责

网约车平台承担责任

相关法律依据

《民法典》

第一千一百九十一条 【用人单位责任和劳务派遣单位、劳务用工单位责任】用人单位的工作人员因执行工作任务造成他人损害的,由用人单位承担侵权责任。用人单位承担侵权责任后,可以向有故意或者重大过失的工作人员追偿。

第一千二百一十三条 【交通事故责任承担主体赔偿顺序】机动车发生交通事故造成损害,属于该机动车一方责任的,先由承保机动车强制保险的保险人在强制保险责任限额范围内予以赔偿;不足部分,由承保机动车商业保险的保险人按照保险合同的约定予以赔偿;仍然不足或者没有投保机动车商业保险的,由侵权人赔偿。

《工伤保险条例》

第十四条 职工有下列情形之一的,应当认定为工伤:

(五)因工外出期间,由于工作原因受到伤害或者发生事故下落不明的;

(六)在上下班途中,受到非本人主要责任的交通事故或者城市轨道交通、客运轮渡、火车事故伤害的;

【网络预约出租汽车经营服务管理暂行办法】

第十六条 网约车平台公司承担承运人责任,应当保证运营安全,保障乘客合法权益。

相关判例

工伤与第三方赔付可同时获得——(2019)苏0509民初7914号

关于佳帆公司认为周付坤系因第三人侵权构成工伤,其已经获得误工费赔偿,故不能同时享有停工留薪期工资。法院认为,一方面,现行法律并未禁止工伤职工同时享受工伤保险待遇和人身损害赔偿;另一方面,工伤保险待遇与民事侵权赔偿二者性质不同,前者属公法领域,基于社保法律关系发生,后者属私法领域,基于民事法律关系发生,不宜径行替代。

保险先赔,公司承担剩余——(2017)冀10刑终167号

刘某系原审附带民事诉讼原告人廊坊市城乡规划设计院的工作人员,案发当天受单位指派驾车,其驾驶的肇事车辆在上诉人中国人民财产保险股份有限公司廊坊市分公司投保了机动车交通事故责任强制保险和商业保险,该保险公司依法应在保险限额内赔偿,不足部分由廊坊市城乡规划设计院承担。

劳务派遣员工接客户被认定职务行为——(2020)鲁06民终2206号

结合原告提交的劳务派遣劳动合同书、银行交易明细、解除/终止劳动合同证明书、工作牌等证据,可以证实被告王云志自2018年9月15日至2020年9月14日由烟台市欢赢人力资源有限公司派遣至烟台市顺成南山融创置业有限公司从事销售工作;结合原告提交的微信截图、交警部门对肇事电动四轮车车主王俊丁的询问笔录、证人当庭作证等证据,可以证实事发时王云志正驾车准备接客户看房;综上,可以认定王云志在劳务派遣期间因执行工作任务造成原告受伤,应由接受劳务派遣的用工单位即被告融创公司承担侵权责任。被告融创公司辩称王云志既非其公司员工亦非执行职务行为,但未提交证据证实其抗辩意见,故对其辩称不予采信。

司机与车主承担连带责任—— (2020)浙06民终2966号

十四、车辆驾驶员及车主之间的关系:被告金桂芳驾驶被告华盛设备安装公司所有的浙AJ××××车辆,替华盛设备安装公司接客户时发生本次交通事故,双方确认被告华盛设备安装公司与金桂芳之间承担连带责任。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
Python脚本大全资源描述 资源概述 Python脚本大全是一个集合了多种实用Python脚本的资源包,旨在为开发者和爱好者提供一系列可以直接使用或作为学习参考的代码示例。这些脚本涵盖了从基础到高级的多种应用场景,包括数据处理、自动化任务、网络爬虫、数据分析、机器学习等。通过这些脚本,用户可以快速实现常见的编程任务,提高开发效率,同时也可以作为学习Python语言和相关技术的实践材料。 资源内容 1. **基础脚本**: - 文件操作:读取、写入、复制、移动文件和文件夹。 - 数据处理:处理CSV、JSON、Excel等常见数据格式。 - 系统工具:获取系统信息、执行系统命令、管理进程等。 2. **网络爬虫**: - 简单爬虫:抓取网页内容、提取特定数据。 - 数据抓取:从API获取数据、解析HTML和XML。 - 高级爬虫:使用Selenium、Scrapy等框架实现复杂爬虫任务。 3. **数据分析与可视化**: - 数据分析:使用Pandas、NumPy等库进行数据清洗、分析。 - 数据可视化:使用Matplotlib、Seaborn等库绘制图表。 - 数据报告:生成HTML、PDF等格式的报告。 4. **机器学习**: - 机器学习基础:线性回归、逻辑回归、决策树等。 - 深度学习:使用TensorFlow、Keras等框架实现神经网络。 - 实用案例:图像识别、自然语言处理、时间序列分析等。 5. **自动化任务**: - 定时任务:使用schedule、APScheduler等库实现定时任务。 - 批处理:批量处理文件、执行批量任务。 - GUI自动化:使用PyAutoGUI等库实现图形界面自动化操作。 6. **实用工具** 日志记录:使用logging模块记录日志
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值