ERP实施过程中的“软肋”

本文探讨了ERP实施过程中领导者沟通的重要性,强调了正确把握实施方向、有效开展培训工作及培养客户团队的关键作用。
ERP实施过程中的“软肋”

  与“一把手”的有效沟通

  随着现代企业制度的建立,目前一大批具有远见卓识的企业家走 上领导岗位,凡是能够决定实施ERP企业的一级领导,对ERP的认识都非常明确。这批人员是ERP实施条件的创造者,他们的观念、决心和作用是不容怀疑 的,但是,在众多企业的ERP实施过程中,他们的作用却并不明显。这一问题的出现,不在于领导层的决心与行动,而在于实施负责人员与领导的沟通能力、沟通 方式和沟通频率。有效的沟通是加强领导者的信心,加大支持力度,从而保证项目成功的最有效的方法之一。

  实施方向的把握

   客户会在项目启动后,根据企业自身的特殊情况提出需求,软件供应商经过调研,会制订出相应的实施方案。在方案的制订过程中特别需要注意的问题是:企业目 前急需解决的主要问题是什么。这个问题的提出,一方面要求实施人员具有高度的概括能力和抽象能力,避免被一些表面现象所困扰,而忽略了本质的问题,结果在 实施过程中投入了相当大的力量,到后期效果反而不理想; 另一方面,在确定企业的实施方案时,应与企业充分协商,将系统中最有实效的内容纳入到前期实施范围内,不要在系统开始就将手工管理模式中的一套管理思路作 为实施内容,从而偏离了ERP的管理思想,越走越远。

  实施过程中的培训工作

  参与过实施ERP项目的工作人员都有 着这样的体会: 在系统启动、安装过程中的培训效果并不理想,培训过程中所讲过的内容,在后期的实施过程中并没有被用户所理解。因此,实施人员必须要在不同阶段、不同场 合,面向不同的人员进行各种形式的讲解工作,将培训工作贯穿始终,这要求实施人员具有良好的沟通能力与素质。

  客户的培养

   ERP的实施工作,需要项目实施人员从客户的根本利益出发,在实施过程中,帮助企业建立一支懂业务、善管理的队伍,这是ERP项目获得可持续发展的关键 因素之一。在实施过程中,每一个流程的确定、每一批数据的产生都需要实施人员将其贯穿与连通,从而使整个系统运转起来。在实施过程中各级人员的每一次进 步,也是企业管理人员水平的一次提高。在这个过程中,如何让企业的系统管理人员、操作使用人员等尽快成长起来,能够担负一些系统的维护工作非常重要,因为 厂商的实施人员总是要离开企业的,只有用户的应用水平有了较大的提高,才能保证ERP的应用一直顺利地进行下去。 
内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值