

1998, Yann LeCun 的 LeNet5
图像特征分布在整个图像上
在具有很少参数的多个位置上提取类似特征时,具有可学习的参数的卷积是个比较有效的方法
在没有应用GPU的时候,能够保存参数和计算就成了一个关键优势
LeNet5并没有把每个像素都作为大型多层神经网络的一个输入,因为图像是高度空间相关的,如果用了这种方法,就不能很好地利用相关性
LeNet5 的主要特征:
- CNN 主要用这3层的序列: convolution, pooling, non-linearity
- 用卷积提取空间特征
- 由空间平均得到子样本
- 用 tanh 或 sigmoid 得到非线性
- 用 multi-layer neural network(MLP)作为最终分类器
- 层层之间用稀疏的连接矩阵,以避免大的计算成本


本文按时间顺序介绍了卷积神经网络的发展,包括LeNet5、AlexNet、OverFeat、VGG、NiN、GoogLeNet、Inception系列、ResNet和Xception。这些模型在深度、宽度和计算效率方面不断优化,推动了图像识别技术的进步。
最低0.47元/天 解锁文章
1345

被折叠的 条评论
为什么被折叠?



