3 损失函数和优化

本文介绍了损失函数在评估分类器性能中的作用,通过实例展示了SVM损失函数的计算,并探讨了L1和L2正则化对权重的影响。同时,解释了为何使用梯度下降优化参数,以及mini batch梯度下降在减少计算量和提升效果上的优势。
摘要由CSDN通过智能技术生成

为了描述之前建立的线性分类器的分类效果,我们引入的损失函数,顾名思义,损失函数越大误差也就越大。

在下图的任务中,将测试图片猫、车和青蛙输入网络,输出了一系列的数值,如下表。

clipboard

很显然我们希望图片对应的分类数值越高越好,例如猫的图片对应cat,但是数值只有3.2,还不如对应的car的数值,所以该线性分类器会将猫这张图片分类为car。

下面引入svm loss函数:

clipboard

其中Sj和Syi分别对应错误分类的值和正确分类的值,猫这张图片的loss为:

max(0,5.1-3.2+1)+max(0,-1.7-3.2+1) = 2.9

同理计算出其他两个图片的loss值。

SVM(支持向量机)的损失函数优化实现是通过最大化边际来实现的。SVM的损失函数是基于Hinge Loss的,它衡量了正确分类和错误分类之间的边际。具体来说,对于每个样本,SVM会计算其真实分类的分数和其他可能分类的分数之间的差距。如果这个差距小于一个预先设定的边际(通常为1),则认为这个样本被正确分类。如果差距大于边际,则认为这个样本被错误分类。 SVM的优化目标是找到一个能够最大化边际的超平面,使得正确分类的样本尽可能远离超平面,而错误分类的样本尽可能接近或超过边际。这可以通过求解一个凸优化问题来实现,其中目标是最小化损失函数和正则化项的和。正则化项用于控制模型的复杂度,以防止过拟合。 在优化过程中,可以使用梯度下降等优化算法来更新模型的参数,使得损失函数逐渐减小。通过迭代更新参数,最终可以得到一个能够最大化边际的超平面,从而实现对样本的分类。 总结起来,SVM的损失函数是基于Hinge Loss的,通过最大化边际来实现对样本的分类。优化过程中使用梯度下降等算法来更新模型参数,使得损失函数逐渐减小,最终得到一个能够最大化边际的超平面。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* *3* [Lecture2:损失函数优化](https://blog.csdn.net/qq_41694024/article/details/128208185)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值