上一篇博文介绍的切诺夫界在实际应用中会比较麻烦,因为随机变量 E [ e s X ] E[e^{sX}] E[esX]的值通常很难求得,就算是求其上界,有时候也是一件难事。下面给出一个简洁但是非常实用的定理。
定理6. 对于一族分布在集合 { 0 , 1 } \{0,1\} {
0,1}上的独立同分布的随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,假设
Pr { X i = 1 } = p \Pr\{X_i=1\} = p Pr{
Xi=1}=p
对所有的 1 ≤ i ≤ n 1\leq i \leq n 1≤i≤n成立,那么对任意的 α > 0 \alpha > 0 α>0有
Pr { 1 n ∑ i = 1 n X i > p + α } < e − 2 n α 2 . \Pr\{\frac{1}{n}\sum_{i=1}^n X_i > p + \alpha\} < e^{-2n\alpha^2}. Pr{
n1i=1∑nXi>p+α}<e−2nα2.
证明 由切诺夫界,对任意的 s > 0 s>0 s>0有
Pr { 1 n ∑ i = 1 n X i > p + α } = Pr { ∑ i = 1 n X i > n ( p + α ) } < ( a ) e − n s ( p + α ) ⋅ E [ e s ∑ i = 1 n X i ] = ( b ) e − n s ( p + α ) ⋅ ∏ i = 1 n E [ e s X i ] = ( c ) e − n s ( p + α ) ⋅ ∏ i = 1 n [ ( 1 − p ) + p ⋅ e s ] ≤ ( d ) e − n s ( p + α ) ⋅ e n ( s p + s 2 / 8 )