大数定律(4):Hoeffding界

本文介绍了概率论中的Hoeffding界,作为大数定律的一个实用工具。针对分布在{0,1}上的独立同分布随机变量,当Pr{Xi=1}=p时,给出了概率不等式Pr{n1i=1∑nXi>p+α}<e^(-2nα^2),证明过程涉及切诺夫界和泰勒展开式,展示了Hoeffding界在处理这类问题的简便性。" 111822691,10294022,Vue实现动态弹窗组件,"['Vue', '前端开发', '组件封装']
摘要由CSDN通过智能技术生成

上一篇博文介绍的切诺夫界在实际应用中会比较麻烦,因为随机变量 E [ e s X ] E[e^{sX}] E[esX]的值通常很难求得,就算是求其上界,有时候也是一件难事。下面给出一个简洁但是非常实用的定理。

定理6. 对于一族分布在集合 { 0 , 1 } \{0,1\} { 0,1}上的独立同分布的随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,假设
Pr ⁡ { X i = 1 } = p \Pr\{X_i=1\} = p Pr{ Xi=1}=p
对所有的 1 ≤ i ≤ n 1\leq i \leq n 1in成立,那么对任意的 α > 0 \alpha > 0 α>0
Pr ⁡ { 1 n ∑ i = 1 n X i > p + α } < e − 2 n α 2 . \Pr\{\frac{1}{n}\sum_{i=1}^n X_i > p + \alpha\} < e^{-2n\alpha^2}. Pr{ n1i=1nXi>p+α}<e2nα2.

证明 由切诺夫界,对任意的 s > 0 s>0 s>0
Pr ⁡ { 1 n ∑ i = 1 n X i > p + α } = Pr ⁡ { ∑ i = 1 n X i > n ( p + α ) } < ( a ) e − n s ( p + α ) ⋅ E [ e s ∑ i = 1 n X i ] = ( b ) e − n s ( p + α ) ⋅ ∏ i = 1 n E [ e s X i ] = ( c ) e − n s ( p + α ) ⋅ ∏ i = 1 n [ ( 1 − p ) + p ⋅ e s ] ≤ ( d ) e − n s ( p + α ) ⋅ e n ( s p + s 2 / 8 )

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值