大数定律(4):Hoeffding界

本文介绍了概率论中的Hoeffding界,作为大数定律的一个实用工具。针对分布在{0,1}上的独立同分布随机变量,当Pr{Xi=1}=p时,给出了概率不等式Pr{n1i=1∑nXi>p+α}<e^(-2nα^2),证明过程涉及切诺夫界和泰勒展开式,展示了Hoeffding界在处理这类问题的简便性。" 111822691,10294022,Vue实现动态弹窗组件,"['Vue', '前端开发', '组件封装']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇博文介绍的切诺夫界在实际应用中会比较麻烦,因为随机变量 E [ e s X ] E[e^{sX}] E[esX]的值通常很难求得,就算是求其上界,有时候也是一件难事。下面给出一个简洁但是非常实用的定理。

定理6. 对于一族分布在集合 { 0 , 1 } \{0,1\} { 0,1}上的独立同分布的随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,假设
Pr ⁡ { X i = 1 } = p \Pr\{X_i=1\} = p Pr{ Xi=1}=p
对所有的 1 ≤ i ≤ n 1\leq i \leq n 1in成立,那么对任意的 α > 0 \alpha > 0 α>0
Pr ⁡ { 1 n ∑ i = 1 n X i > p + α } < e − 2 n α 2 . \Pr\{\frac{1}{n}\sum_{i=1}^n X_i > p + \alpha\} < e^{-2n\alpha^2}. Pr{ n1i=1nXi>p+α}<e2nα2.

证明 由切诺夫界,对任意的 s > 0 s>0 s>0
Pr ⁡ { 1 n ∑ i = 1 n X i > p + α } = Pr ⁡ { ∑ i = 1 n X i > n ( p + α ) } < ( a ) e − n s ( p + α ) ⋅ E [ e s ∑ i = 1 n X i ] = ( b ) e − n s ( p + α ) ⋅ ∏ i = 1 n E [ e s X i ] = ( c ) e − n s ( p + α ) ⋅ ∏ i = 1 n [ ( 1 − p ) + p ⋅ e s ] ≤ ( d ) e − n s ( p + α ) ⋅ e n ( s p + s 2 / 8 )

泛化误差指的是模型在未见过的数据上的预测性能与真实结果之间的差距。它是衡量模型对未知数据适应能力的重要指标。在机器学习中,理想情况下的泛化误差应当尽可能小,这意味着模型能够很好地从训练数据中学习到普遍规律而非偶然特征。 在Python机器学习实践中,我们通过交叉验证(如GridSearchCV在引用中的应用)来估计泛化误差。这种方法通过将数据集划分为若干子集,在其中一组子集上进行训练,在其余子集上进行测试,以此类推,确保每个样本都有机会参与到训练和测试过程中。这种做法可以得到多个模型性能的平均分数,从而更准确地估算泛化误差。 关于引用提到的大数定律Hoeffding不等式,它们用于证明经验误差(基于有限样本计算的误差)在理论上会接近泛化误差。随着训练数据量的增加,经验和泛化误差之间通常趋于一致,但并非绝对相等。如果模型的泛化误差显著大于训练误差,可能表示存在欠拟合或过拟合问题: - **欠拟合**:模型过于简单,无法捕捉数据中的复杂关系,导致即使在训练集上表现不佳。 - **过拟合**:模型过于复杂,过度拟合了训练数据中的噪声和异常点,因此在新数据上的表现不佳。 要解决这些问题,可以通过调整模型复杂度、增加正则化、使用更多的特征选择技术等方式来优化模型的泛化能力。 ### 相关问题: 1. 如何利用交叉验证估计模型的泛化误差? 2. 欠拟合和过拟合的区别是什么? 3. 正则化是如何帮助减小泛化误差的?
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值