灰度变换与空间滤波之二(读数字图像处理学习halcon)

原创 2017年01月04日 10:31:12

直方图处理

灰度级范围(0,L-1)的数字图像的直方图是离散函数h(rk)=nk,  rk表示第k级灰度值,nk是图像中灰度为rk的像素个数。在实践中常用MN表示的图像像素总数它的每个分量来表示归一化直方图。归一化的直方图由p(rk)=nk/MN给出,p(rk)即灰度级rk在图像中出现的概率的一个估计。所有分量和为1。

图像的直观感觉

暗图像,直方图分量集中在灰度级的低端。亮图像,直方图分量集中在灰度级的高端。低对比度图像具有较窄的直方图,且集中于灰度级中部。高对比度图像中直方图的分量覆盖很宽的灰度级范围,而且像素的分布没有不太均匀,只有少数垂线比其他的高许多。

直方图均衡

halcon算子 equ_histo_image (GrayImage, ImageEquHisto)

作用:增强对比度

直方图规定化

(待研究)

局部直方图均衡

(待研究)

空间滤波基础

滤波指接受或拒绝一定的频率分量。低通滤波器的最终效果是模糊(平滑)一副图像。空间滤波器由(1)一个领域(典型地是一个较小的矩形),(2)对该邻域包围的图像像素执行的预定义操作组成。滤波产生一个新像素,新像素的坐标等于邻域中心的坐标,像素的值是滤波操作的结果。

平滑空间滤波器

平滑滤波器用于模糊处理和降低噪声。模糊处理经常用于预处理任务中,如在大目标提取前去除图像中的一些琐碎细节,以及桥接直线或曲线的缝隙。

均值滤波器mean_image(Image : ImageMean : MaskWidth, MaskHeight : )

中值滤波器median_image(Image : ImageMedian : MaskType, Radius, Margin : )

高斯滤波器gauss_image(Image : ImageGauss : Size : )

当图像细节与滤波器模板近似相同时,图像中一些细节受到的影响较大。

锐化空间滤波器

目的突出灰度的过渡区域

二阶微分在增强细节方面要比一阶微分好得多,是一个适合锐化图像的理想特性。

laplace算子laplace(Image : ImageLaplace : ResultType, MaskSize, FilterMask : )

该算子强调的是图像中灰度的突变,并不强调灰度级缓慢变化的区域。这将产生把浅灰色边线和突变点叠加到暗色背景的图像。将原图像和laplace图像叠加在一起的简单方法,可以复原背景并保持laplace锐化处理的效果。

read_image (Image, 'C:/Users/Percival/Desktop/laplace.png')
rgb1_to_gray (Image, GrayImage)
get_image_size (GrayImage, Width, Height)
laplace (GrayImage, ImageLaplace, 'absolute', 3, 'n_4')
add_image (ImageLaplace, GrayImage, ImageResult, 1, 0)

非锐化掩蔽和高提升滤波

1、模糊原图像;2、从原图像中减去模糊图像(产生的差值图像称为模板);3、将模板加到原图像上。

使用一阶微分对(非线性)图像锐化-梯度

robert算子roberts(Image : ImageRoberts : FilterType : )

Soble算子sobel_amp(Image : EdgeAmplitude : FilterType, Size : )

sobel_dir(Image : EdgeAmplitude, EdgeDirection : FilterType, Size : )

混合空间增强

多算法综合应用

使用模糊技术进行灰度变换和空间滤波

(待研究)


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像增强-图像锐化

图像锐化主要影响图像中的低频分量,不影响图像中的高频分量。 图像锐化的主要目的有两个: 1.增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察...

频率域滤波基础之二(读数字图像处理学习halcon)

二维离散傅立叶(DFT)变化及其反傅立叶变换(IDFT) 傅立叶变换通用形式 对通用形式来讲,c=1,s=-1即为傅立叶变化(图像空间域转频域);c=1/MN,s=1即为逆变换(频域转空间域)...

灰度变换与空间滤波之一(读数字图像处理学习halcon)

接触机器视觉的东西到现在有好长一段时间了,从以前折腾opencv到现在折腾halcon,这么浑浑噩噩的一年折腾,也没折腾出什么深刻的认识。回过头来想想,自己的学习过程完全是建造空中楼阁。提到的open...

频率域滤波基础之一(读数字图像处理学习halcon)

如果不了解在图像滤波中如何应用傅里叶变换和频率域的基本知识,要彻底理解这一领域也是不太可能。

频率域滤波基础之五(读数字图像处理学习halcon)

选择性滤波 在很多应用中,其中感兴趣是处理指定的频段或频率矩形。第一类滤波器分别称为带阻滤波器或带通滤波器。第二类滤波器称为陷波滤波器。 1、带阻滤波和带通滤波 D(u,v)是距离频率矩形中心的距...

频率域滤波基础之三(读数字图像处理学习halcon)

低频对应于图像变化缓慢的灰度分量,前面我们通过衰减高频成分来平滑图像。高频则对应于图像中变化快速的灰度变化。这些通常是物体的边缘及噪声。以下我们将通过高通滤波来实现图像的锐化。高通滤波会衰减傅立叶变换...

频率域滤波基础之四(读数字图像处理学习halcon)

频率域内的拉普拉斯算子

相机标定之一:相机模型(读multiple view geometry in computer vision)

相机是3D世界和2D图像之间的一种映射。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)