常用无监督降维方法简述

Unsupervised Dimension Reduction

Data with high dimension is always difficult to tackle. One hand is that it requires tremendous computation resource. On the other hand, it is not so objective as the one with low dimension. Therefore, dimension reduction is one of the key tricks to tackle it.

Linear Dimension Reduction

In order to reduce the dimension of samples, such as transform {xi}ni=1 into {zi}ni=1 with little lose of information, we can use linear transformation :

zi=Txi

Before doing that, it is necessary to make sure the average of training set {xi}ni=1 to be zero, i.e. centralization. So if it were not true, we should move the frame :
xixi1ni=1nxi

Principal Component Analysis, PCA

PCA, as you can see in the following contents, is the simplest linear dimension reduction method. Suppose that zi is the orthogonal projection of xi . Then we require that TTT=Im . By the same way in LS methods we try to reduce the lose of information as little as possible, i.e. we try to minimize:

i=1nTTTxixi2=tr(TCTT)+tr(C)

where C is the covariance of training set:
C=i=1nxixTi

In summary, PCA is defined as
maxTRm×dtr(TCTT)s.t.TTT=Im

Consider the eigenvalues of C :
Cξ=λξ

Define the eigenvalues and corresponded eigen vectors as λ1λ2λd0 and ξ1,,ξd respectively. Then we get :
T=(ξ1,,ξm)T

Here is a simple example:

n=100;
%x=[2*randn(n,1) randn(n,1)];
x=[2*randn(n,1) 2*round(rand(n,1))-1+randn(n,1)/3];
x=x-repmat(mean(x),[n,1]);
[t,v]=eigs(x'*x,1);

figure(1); clf; hold on; axis([-6 6 -6 6]);
plot(x(:,1),x(:,2),'rx');
plot(9*[-t(1) t(1)], 9*[-t(2) t(2)]);

这里写图片描述

Locality Preserving Projections

In PCA, the structure of clusters in origin training set may be changed, which is not true in locality preserving projections. It is another version of linear dimension reduction.
Define the similarity between xi and xi as Wi,i0 . When they are similar to large degree Wi,i is of a large value and vice versa. Since similarity is symmetric, we require Wi,i=Wi,i . There are several normal forms of similarity, such as the Gaussian Similarity:

Wi,i=exp(xixi22t2)

where t>0 is a tunable parameter.
For the purpose of holding the structure of clusters, it is necessary to hypothesis that similar xi would be transformed to similar zi . That is to say, we ought to minimize:
12i,i=1nWi,iTxiTxi2

However, to avoid the solution T=0 , we require
TXDXTTT=Im

where X=(x1,,xn)Rd×n , D is a diagonal matrix:
Di,i=i′′=1nWi,i′′0(i=i)(ii)

If we set L=DW , then we can represent our optimization goal as
minTRm×dtr(TXLXTTT)s.t.TXDXTTT=Im

So how to solve it? Consider the method we use in PCA:
XLXTξ=λXDXTξ

Then define the generalized eigenvalues and eigen vectors as λ1λ2λd0 and ξ1,,ξd respectively. Therefore
T=(ξd,ξd1,,ξdm+1)T
.

n=100;
%x=[2*randn(n,1) randn(n,1)];
x=[2*randn(n,1) 2*round(rand(n,1))-1+randn(n,1)/3];
x=x-repmat(mean(x),[n,1]);
x2=sum(x.^2,2);
W=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*x'));
D=diag(sum(W,2)); L=D-W;
z=x'*D*x;
z=(z+z')/2;
[t,v]=eigs(x'*L*x,z,1,'sm');

figure(1); clf; hold on; axis([-6 6 -6 6]);
plot(x(:,1),x(:,2),'rx');
plot(9*[-t(1) t(1)], 9*[-t(2) t(2)]);

这里写图片描述

Kernalized PCA

Let us turn to methods of nonlinear dimension reduction. Due to the time limit, we may not analyze it as deep as the linear one.
When it comes to nonlinearity, kernal functions are sure to be highlighted. Take the Gaussian Kernal function for example:

K(x,x)=exp(xx22h2)

Here we will not take the eigenvalues of C into account as we did in PCA, but the eigenvalues of kernal matrix Kα=λα, where the (i,i) th element is K(xi,xi) . Hence KRn×n . Note that dimension of the kernal matrix K depends only on the number of samples.
However, centralization is necessary:
KHKH

where
H=In1n×n/n

1n×n is a matrix with all the elements to be one. The final outcome of kernalized PCA is:
(z1,.zn)=(1λ1α1,,1λmαm)THKH

where α1,,αm are m eigen vectors corresponded with m largest eigenvalues of HKH .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值