约束规划问题与凸二次规划

让我首先讨论一下形式的约束规划问题:

minf(x),s. t. xRnci(x)=0,iE={ 1,2,,l}ci(x)0,iI={ l+1,l+2,,l+m}

本文中我们不深究一般约束规划问题的最优性性条件的证明,仅给出部分常用定理。 后续我们也仅针对凸优化问题做详细讨论。

基本概念

无约束规划问题的讨论详见此文,这里介绍了局部解与全局解得概念。约束规划问题解得概念与之类似,此处省略。但要注意这里存在可行域的问题。记上述约束规划问题的可行域为:

D={ x|ci(x)=0,iE,ci(x)0,iI}

x^ 是一般约束问题的可行点,当 iI 时,对某个约束,若 ci(x^)=0 ,则称 ci(x^)0 x^ 处的有效约束(active constraint);若 ci(x^)<0 ,则称 ci(x^)0 x^ 处的非有效约束。定义

I(x^)={ i|ci(x^)=0,iI}
x^ 处的 有效集(active set)。

局部解的必要条件

一阶必要条件

考虑上述约束规划问题,这里我们假设 f(x),ci(x),(i=1,2,,l+m) 是连续可微函数。由于时间有限,这里对可行点(feasible point)、可行方向(feasible direction)、线性化锥约束限制条件(constraint qualification)、Farkas引理 等概念、定理不作介绍。我们引进Lagrange函数

L(x,λ)=f(x)+i=1l+mλici(x)
定理 1(约束问题局部解的一阶必要条件):
设约束问题中 f(x),ci(x),(i=1,2,,l+m) 具有连续可微的一阶偏导数,若 x 是该约束问题的局部解,并且在 x 处约束限制条件成立 1,则存在 λ=(λ1,λ2,,λl+m)T 使得:
xL(x,λ)=f(x)+i=1l+mλici(x)=0
其中
ci(x
  • 13
    点赞
  • 98
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值