漫谈逆向强化学习 - A Brief Review to Inverse Reinforcement Learning

下面我们来探讨下逆向强行学习的基本原理和典型方法,我们假设您已经对强化学习和凸优化的基本原理有一定的了解。

概述

我们先介绍下逆向强化学习的概念预分类:

什么是逆向强化学习呢?当完成复杂的任务时,强化学习的回报函数很难指定,我们希望有一种方法找到一种高效可靠的回报函数,这种方法就是逆向强化学习。我们假设专家在完成某项任务时,其决策往往是最优的或接近最优的,当所有的策略产生的累积汇报函数期望都不比专家策略产生的累积回报期望大时,强化学习所对应的回报函数就是根据示例学到的回报函数。即逆向强化学习就是从专家示例中学习回报函数。当需要基于最优序列样本学习策略时,我们可以结合逆向强化学习和强化学习共同提高回报函数的精确度和策略的效果。逆向强化学习的基本理论可参考如下论文:

Ng A Y, Russell S J. Algorithms for Inverse Reinforcement Learning. ICML, 2000

逆向强化学习一般流程如下:

  1. 随机生成一个策略作为初始策略;
  2. 通过比较“高手”的交互样本和自己交互样本的差别,学习得到回报函数;
  3. 利用回报函数进行强化学习,提高自己策略水平;
  4. 如果两个策略差别不大,就可以停止学习了,否则回到步骤2。

逆向强化学习分类如下:

  1. 最大边际形式化:学徒学习、MMP方法、结构化分类、神经逆向强化学习。
  2. 基于概率模型的形式化:最大熵IRL、相对熵IRL、深度逆向强化学习。

最大边际化方法的缺点是很多时候不存在单独的回报函数使得专家示例行为既是最优的又比其它任何行为好很多,或者不同的回报函数挥导致相同的专家策略,也就是说这种方法无法解决歧义问题。基于概率模型的方法可以解决此问题。

逆向强化学习项目可参考:

https://github.com/MatthewJA/Inverse-Reinforcement-Learning

基于最大边际的逆向强化学习

学徒学习

学徒学习指的是从专家示例中学到回报函数,使得在该回报函数下所得的最优策略在专家示例策略附近。设未知的回报函数
R ( s ) = w ⋅ ϕ ( s ) R(s)=w\cdot \phi(s) R(s)=wϕ(s) 其中 ϕ ( s ) \phi(s) ϕ(s) 为基函数,可以是多项式基底、傅里叶基底等。此时逆向强化学习要求得的是灰板函数的系数 w w w

根据值函数定义: E s 0 ∼ D [ V π ( s 0 ) ] = E [ ∑ t = 0 ∞ γ t R ( s t ) ∣ π ] = E [ ∑ t = 0 ∞ γ t w ⋅ ϕ ( s t ) ∣ π ] = w ⋅ E [ ∑ t = 0 ∞ γ t ϕ ( s t ) ∣ π ] E_{s_{0}\sim D}[V^{\pi}(s_{0})] = E\left[\left.\sum_{t=0}^{\infty}\gamma^{t}R(s_{t})\right|\pi\right]=E\left[\left.\sum_{t=0}^{\infty}\gamma^{t}w\cdot\phi(s_{t})\right|\pi\right]=w\cdot E\left[\left.\sum_{t=0}^{\infty}\gamma^{t}\phi(s_{t})\right|\pi\right] Es0D[Vπ(s0)]=E[t=0γtR(st)π]=E[t=0γtwϕ(st)π]=wE[t=0γtϕ(st)π] 定义特征期望 μ ( π ) = E [ ∑ t = 0 ∞ γ t ϕ ( s t ) ∣ π ] \mu(\pi)=E\left[\left.\sum_{t=0}^{\infty}\gamma^{t}\phi(s_{t})\right|\pi\right] μ(π)=E[t=0γtϕ(st)π] 因此 E s 0 ∼ D [ V π ( s 0 ) ] = w ⋅ μ ( π ) E_{s_{0}\sim D}[V^{\pi}(s_{0})] =w\cdot \mu(\pi) Es0D[Vπ(s0)]=wμ(π)。给定 m m m 跳专家轨迹后,我们可以估计特征期望为 μ ^ E = 1 m ∑ i = 1 m ∑ t = 0 ∞ γ t ϕ ( s t ( i ) ) \hat{\mu}_{E}=\frac{1}{m}\sum_{i=1}^{m}\sum_{t=0}^{\infty}\gamma^{t}\phi\left(s_{t}^{(i)}\right) μ^E=m1i=1mt=0γtϕ(st(i))
我们要找一个策略,使得它的表现与专家策略相近,其实就是找到一个策略 π ~ \tilde{\pi} π~ 的特征期望与专家策略的特征期望相近,即 ∥ μ ( π ~ ) − μ E ∥ 2 ≤ ϵ \| \mu(\tilde{\pi})-\mu_{E} \|_{2}\leq \epsilon μ(π~)μE2ϵ 对于任意的权重 ∥ w ∥ 2 ≤ 1 \|w\|_{2}\leq 1 w21,值函数满足如下不等式

  • 34
    点赞
  • 163
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
尽管先进的驾驶员辅助系统(ADAS)已在汽车行业广泛采用,以提高驾驶安全性和舒适性并减轻驾驶员的驾驶负担,但它们通常不会反映不同驾驶员的驾驶风格或个性化定制。 这对于舒适和愉快的驾驶体验以及提高市场接受度可能很重要。 但是,由于驾驶员数量众多且差异很大,要理解并进一步确定驾驶员的驾驶方式具有挑战性。 先前的研究主要在对驾驶员的驾驶行为进行建模时采用了物理方法,但是,即使不是不可能,在捕获人类驾驶员的驾驶特性方面也常常受到很大的限制。 本文提出了一种基于强化学习方法,该方法通过驾驶员与周围环境的互动学习过程来制定驾驶风格。 根据强化学习理论,可以将驾驶行为视为最大化奖励功能。 代替校准未知奖励函数以满足驾驶员的期望响应,我们尝试利用最大似然逆向强化学习(MLIRL)从人类驾驶数据中恢复它。 本文还提出了一种基于IRL的纵向驾驶辅助系统。 首先,从测试车辆收集大量的现实世界驾驶数据,并将数据分为两组分别用于训练和测试目的。 然后,将纵向加速度建模为人类驾驶活动中的玻耳兹曼分布。 奖励函数表示为一些核化基函数的线性组合。 基于训练集,使用MLIRL估算驾驶风格参数向量。 最后,开发了基于学习的纵向驾驶辅助算法,并在测试集上进行了评估。 结果表明,该方法能够较好地反映驾驶员的驾驶行为。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值