简述模型预测控制——Introduction to Model Predictive Control (MPC)

本文介绍了模型预测控制(MPC)的基本概念,它是一种使用优化方法解决控制问题的策略。MPC通过考虑未来有限步长的控制序列来简化最优控制问题,虽然牺牲了全局最优性,但能有效处理约束。文章讨论了MPC与最优控制的区别,以及典型MPC问题的解决方式,并特别提到了显式MPC在特定条件下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文简要介绍下模型预测控制的基本原理与简单应用方法。本文针对有一定控制理论背景的读者。

最优控制问题

给定一个系统模型和控制目标,我们往往可以找到无穷多个控制器,使得该系统的输出收敛到控制目标。难么,我们如何从这无穷多个控制器中找到一个最优的呢?这便是最优控制问题。解决最优控制问题,或者说任何最优化问题,我们首先要明确定义一个优化目标,即一个衡量好坏的量化标准。随后,在该标准下找到一个控制器使得优化目标达到最小/最大。

有关优化问题的具体讨论可参考此文
最优控制问题的具体细节亦可参考此文

模型预测控制

在这里插入图片描述
模型预测控制(Model Predictive Control, 以下简称 MPC)是以优化方法来求解控制问题,或者说是以优化问题的求解来给出控制信号。如上图所示,MPC包含3个主要成分:模型、预测、控制,均取其字面意思。

MPC与最优控制

一般的最优控制,强调的是整个控制过程(时间域)的最优性。常用的最优控制方法包括变分法极大值原理动态规划。事实上也是常见的优化方法。最优控制问题存在两个挑战:

  1. 具有复杂约束的最优化问题难以求解;
  2. 最优控制要求系统模型精确已知。

针对上述两个挑战,MPC方法退而求其次地仅仅考虑未来有限个控制周期,这样一来最优控制问题便得到了简化,但是也牺牲了一定的最优性。

考虑下输简单离散LTI最优控制问题:
min ⁡ J = ∑ t = 0 ∞ ℓ ( x ( t ) , u ( t ) ) s.t. u ( t ) ∈ U , x ( t ) ∈ X , t = 0 , 1 , 2 , … x ( t + 1 ) = A x ( t ) + B u ( t ) , x ( 0 ) = z \begin{aligned} \min\quad & J = \sum_{t=0}^{\infty}\ell(x(t),u(t)) \\ \text{s.t.}\quad & u(t) \in \mathcal{U}, x(t)\in\mathcal{X}, t= 0,1,2,\dots \\ &x(t+1) = Ax(t) + Bu(t),\\ &x(0) = z \end{aligned} mins.t.J=t=0(x(t),u(t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值