简述模型预测控制——Introduction to Model Predictive Control (MPC)

本文介绍了模型预测控制(MPC)的基本概念,它是一种使用优化方法解决控制问题的策略。MPC通过考虑未来有限步长的控制序列来简化最优控制问题,虽然牺牲了全局最优性,但能有效处理约束。文章讨论了MPC与最优控制的区别,以及典型MPC问题的解决方式,并特别提到了显式MPC在特定条件下的应用。
摘要由CSDN通过智能技术生成

本文简要介绍下模型预测控制的基本原理与简单应用方法。本文针对有一定控制理论背景的读者。

最优控制问题

给定一个系统模型和控制目标,我们往往可以找到无穷多个控制器,使得该系统的输出收敛到控制目标。难么,我们如何从这无穷多个控制器中找到一个最优的呢?这便是最优控制问题。解决最优控制问题,或者说任何最优化问题,我们首先要明确定义一个优化目标,即一个衡量好坏的量化标准。随后,在该标准下找到一个控制器使得优化目标达到最小/最大。

有关优化问题的具体讨论可参考此文
最优控制问题的具体细节亦可参考此文

模型预测控制

在这里插入图片描述
模型预测控制(Model Predictive Control, 以下简称 MPC)是以优化方法来求解控制问题,或者说是以优化问题的求解来给出控制信号。如上图所示,MPC包含3个主要成分:模型、预测、控制,均取其字面意思。

MPC与最优控制

一般的最优控制,强调的是整个控制过程(时间域)的最优性。常用的最优控制方法包括变分法极大值原理动态规划。事实上也是常见的优化方法。最优控制问题存在两个挑战:

  1. 具有复杂约束的最优化问题难以求解;
  2. 最优控制要求系统模型精确已知。

针对上述两个挑战,MPC方法退而求其次地仅仅考虑未来有限个控制周期,这样一来最优控制问题便得到了简化,但是也牺牲了一定的最优性。

考虑下输简单离散LTI最优控制问题:
min ⁡ J = ∑ t = 0 ∞ ℓ ( x ( t ) , u ( t ) ) s.t. u ( t ) ∈ U , x ( t ) ∈ X , t = 0 , 1 , 2 , … x ( t + 1 ) = A x ( t ) + B u ( t ) , x ( 0 ) = z \begin{aligned} \min\quad & J = \sum_{t=0}^{\infty}\ell(x(t),u(t)) \\ \text{s.t.}\quad & u(t) \in \mathcal{U}, x(t)\in\mathcal{X}, t= 0,1,2,\dots \\ &x(t+1) = Ax(t) + Bu(t),\\ &x(0) = z \end{aligned} mins.t.J=t=0(x(t),u(t

Model Predictive Control:Theory, Computation, and Design,2nd Edition. James B. Rawlings, David Q. Mayne, Moritz M. Diehl. Chapter 1 is introductory. It is intended for graduate students in engineering who have not yet had a systems course. But it serves a second purpose for those who have already taken the first graduate systems course. It derives all the results of the linear quadratic regulator and optimal Kalman filter using only those arguments that extend to the nonlinear and constrained cases to be covered in the later chapters. Instructors may find that this tailored treatment of the introductory systems material serves both as a review and a preview of arguments to come in the later chapters. Chapters 2-4 are foundational and should probably be covered in any graduate level MPC course. Chapter 2 covers regulation to the origin for nonlinear and constrained systems. This material presents in a unified fashion many of the major research advances in MPC that took place during the last 20 years. It also includes more recent topics such as regulation to an unreachable setpoint that are only now appearing in the research literature. Chapter 3 addresses MPC design for robustness, with a focus on MPC using tubes or bundles of trajectories in place of the single nominal trajectory. This chapter again unifies a large body of research literature concerned with robust MPC. Chapter 4 covers state estimation with an emphasis on moving horizon estimation, but also covers extended and unscented Kalman filtering, and particle filtering. Chapters 5-7 present more specialized topics. Chapter 5 addressesthe special requirements of MPC based on output measurement instead of state measurement. Chapter 6 discusses how to design distributed MPC controllers for large-scale systems that are decomposed into many smaller, interacting subsystems. Chapter 7 covers the explicit optimal control of constrained linear systems. The choice of coverage of these three chapters may vary depending on the instructor's or student's own research interests. Three appendices are included, again, so that the reader is not sent off to search a large research literature for the fundamental arguments used in the text. Appendix A covers the required mathematical background. Appendix B summarizes the results used for stability analysis including the various types of stability and Lyapunov function theory. Since MPC is an optimization-based controller, Appendix C covers the relevant results from optimization theory.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值