关闭
当前搜索:

指数滑动平均(ExponentialMovingAverage)EMA

EMA被广泛的应用在深度学习的BN层中,RMSprop,adadelta,adam等梯度下降方法 tf.train.ExponentialMovingAverage 函数定义 tensorflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型,他使用指数衰减来计算变量的移动平均值。 tf.train.ExponentialMovingA...
阅读(67) 评论(0)

KERAS_技巧

微调Fine_tune: 导入keras标准模型: model_pretrained= ResNet50(weights='imagenet', include_top=False, input_shape=(768, 768, 3)) 或者导入自己训练的模型: model_pretrained=load_model(“**.hdf5”) 以上这个模型默认有初始化权值 model_ne...
阅读(306) 评论(0)

字符串模糊匹配

1, python库(difflib,可以对string,list进行匹配) import difflib s1 = [ 1, 2, 3, 5, 6, 4 ] s2 = [ 2, 3, 5, 4, 6, 1 ] matcher = difflib.SequenceMatcher(None, s1, s2) print(matcher.ratio()) 结果为0.666666666666666...
阅读(125) 评论(0)

图像加速处理库Simd

优势: (1)纯c++源码,无任何第三方依赖,并且支持opencv (2)针对不同的cpu做过专门的SSE,AVX,NEON加速,速度比opencv快 (3)支持跨平台,windows,linux,android,ARM   下面的例子是自带的一个人脸检测的测试,UseFaceDetection.cpp, 测试效果:I7 7700HQ VGA(640*480):11MS...
阅读(367) 评论(0)

场景文字检测之TextBoxes

传统的文字检测有3个思路: (1)    Character-based (2)    Word-based (3)    Text-line-based   TextBoxes: A Fast Text Detector with aSingle Deep Neural Network 是华中科技,白翔老师组的,AAAI2017, 论文主要是基于SSD做了以下的修改, (1)  ...
阅读(1037) 评论(7)

centos7下mxnet0.11.0源码安装

mxnet依赖项如下: (1)nvidia 驱动,cuda8.0,cudnn5.1 (2)OpenBlas-0.2.20 (3)Opencv2.4.12 (4)Python-2.7.8  or higher (5)mxnet安装   (1)nvidia 驱动,cuda8.0,cudnn5.1 去官网,http://www.nvidia.cn/Download/index.as...
阅读(526) 评论(0)

win10+vs2015下caffe安装详解

本人安装环境: 1, windows10操作系统 2, vs2015,可以下载官方Community版本,这个可以一直免费使用 3, python2.7,可以参考该链接http://blog.csdn.net/qq_14845119/article/details/52354394 4, 官方BVLC版本的caffe ,https://github.com/BVLC/caff...
阅读(1868) 评论(13)

centos7.0 caffe安装详解

caffe的外部依赖项比较多,主要需要安装以下几部分 (1)nvidia 驱动,cuda8.0,cudnn5.1 (2)ProtoBuffer-2.5.0 (3)Boost _1_59_0 (4)Gflags (5)Glog -0.3.3 (6)OpenBlas-0.2.20 (7)HDF5-1.8.9 (8)Opencv2.4.12 (9)LMDB&Leveldb (10)S...
阅读(475) 评论(0)

周末torch7闪电战(blitz)

主要内容 (1)torch7的安装 (2)torch7的hello-world入门 (3)对抗生成网络torch-gan   ...... (1)torch7的安装(centos7测试) LuaJIT方法安装: git clone https://github.com/torch/distro.git --recursive cd torch; bash install-deps;...
阅读(263) 评论(0)

行人重识别之重排序(re-ranking)

行人重识别简称Re-identification,目前研究这个方向的大神主要有,UTS的郑良,郑哲东,CUHK的xiaotong等。 这里想分析下,2017年的cvpr, Re-ranking Person Re-identification with k-reciprocalEncoding,文章主要提出了基于k阶导数编码的方式,对需要检测的gallery中的图片进行重排序,使得识别结果有所提...
阅读(1491) 评论(1)

1秒变军装之faceswap

在八一期间,朋友圈各种流行1秒换军装,效果确实很赞。   程序整体思想分为以下几个部分, (1)使用opencv进行人脸检测 (2)使用Dlib进行69个关键点检测 (3)进行旋转,缩放,平移等变换,使得第二个图和原始图相互吻合 (4)将第二个图的颜色匹配到第一个图 (5)将第二个图的人脸特征,通过使用掩码的方式混合融合进第一个图   当然这个并没有网上的H5的效果好,但是基本还...
阅读(794) 评论(0)

人体姿态识别之RMPE

RMPE出自2017ICCV,RMPE: Regional Multi-Person Pose Estimation,是上海交大,卢策吾老师组的作品。   主流的姿态识别通常2个思路, (1)two-step framework,就是先进行行人检测,得到边界框,然后在每一个边界框中检测人体关键点,连接成一个人形,缺点就是受检测框的影响太大,漏检,误检,IOU大小等都会对结果有影响,代表方法就...
阅读(1270) 评论(0)

人脸识别之SphereFace

2017的一篇cvpr,SphereFace: Deep Hypersphere Embedding for Face Recognition,继centerloss之后又一大作。 文章主要提出了归一化权值(normalize weights and zero biases)和角度间距(angular margin),基于这2个点,对传统的softmax进行了改进,从而实现了,最大类内距离小于最...
阅读(5691) 评论(22)

Fine-Grained Classification之车型识别

先说这篇文章,Monza: Image Classification of Vehicle Make and ModelUsing Convolutional Neural Networks and Transfer Learning,该文章使用了3DObject Representations for Fine Grained Categorization这篇文章的车型数据集,一共16185...
阅读(2030) 评论(4)

caffe模型weights&featureMap 可视化(c++)

caffe模型在训练完成后,会生成一个*.caffemodel的文件,在运行的时候,直接调用caffe就可以读取其中的相应权值参数。但是如果用一个第三方软件打开这个,却是不可以可视化的二值乱码。   将模型中的参数导出,可编辑化后能有哪些好处呢, (1)方便进行fpga平台的移植 (2)可以基于别人训练好的模型,0数据训练自己的模型,使用自己的模型拟合别人模型的权值分布,达到用模型训模型的...
阅读(840) 评论(2)
77条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:339179次
    • 积分:3740
    • 等级:
    • 排名:第9758名
    • 原创:75篇
    • 转载:1篇
    • 译文:1篇
    • 评论:660条
    最新评论