课程主页在http://blog.csdn.net/sxhelijian/article/details/39152703,课程资源在云学堂“贺老师课堂”同步展示,使用的帐号请到课程主页中查看。
【项目6-回文、素数】
(1)编制一个函数reverse,返回给定数据的“反序数”,例如输入1234,输出4321。请编制reverse函数,在下面代码的基础上补充相关的部分,实现要求的功能。
int main()
{
int m,n;
cin>>m;
n=reverse(m);
cout<<n<<endl;
}
int reverse(int x) //函数只管求值,不管输出。输出由main函数完成
{ }
算法提示:流程图及其示例见图。
参考解答:
#include <iostream>
using namespace std;
int reverse(int);//自定义函数的原型(即函数声明)
int main()
{
int m,n;
cin>>m;
n=reverse(m);
cout<<n<<endl;
}
int reverse(int x)
{
int m=0;
while(x>0)
{
m=m*10+x%10;
x=x/10;
}
return m;
}
(2)编制isPalindrome(),用于判断参数是否是回文数——回文数,即从前往后读和从后往前读都一样的数,如1221和121都是回文数,而1231、123都不是回文数。请编制isPalindrome(函数,在下面代码的基础上补充相关的部分,实现要求的功能。
int main()
{
int m;
cin>>m;
if(isPalindrome(m))
cout<<m<<"是回文数,噢耶!"<<endl;
else
cout<<m<<"不是回文数。回文有什么好!"<<endl;
return 0;
}
bool isPalindrome(int n)
{ }
参考解答1:
#include <iostream>
using namespace std;
bool isPalindrome(int);//自定义函数的原型(即函数声明)
int main()
{
int m;
cin>>m;
if(isPalindrome(m))
cout<<m<<"是回文数,噢耶!"<<endl;
else
cout<<m<<"不是回文数。回文有什么好!"<<endl;
return 0;
}
bool isPalindrome(int n)
{
bool palindrome=false; //先默认不是回文数
int m,k;
m=n;
k=0;//k用于求出n的反序数
while(m>0)
{
k=k*10+m%10;
m=m/10;
}
if(k==n)
palindrome=true;
return palindrome;
}
参考解答2:这样划分功能更合适
#include <iostream>
using namespace std;
bool isPalindrome(int);//自定义函数的原型(即函数声明)
int reverse(int);
int main()
{
int m;
cin>>m;
if(isPalindrome(m))
cout<<m<<"是回文数,噢耶!"<<endl;
else
cout<<m<<"不是回文数。回文有什么好!"<<endl;
return 0;
}
bool isPalindrome(int n)
{
bool palindrome=false; //先默认不是回文数
if(reverse(n)==n)
palindrome=true;
return palindrome;
}
int reverse(int x)
{
int m=0;
while(x>0)
{
m=m*10+x%10;
x=x/10;
}
return m;
}
(3)编制一个返回值为bool型的函数isPrimer(),用于判断参数是否为素数(是素数返回true,否则false),自编main函数用于测试;
int main()
{
//此处写代码,能够调用isPrimer函数完成“测试”
}
bool isPrimer(int n) //在这个函数中只管判断,不能出现cout语句!
{
}
参考解答:
#include<iostream>
#include<cmath>
using namespace std;
bool isPrime(int);
int main()
{
int m;
cin>>m;
cout<<m<<((isPrime(m))?"是":"不是")<<"素数。"<<endl;
return 0;
}
bool isPrime(int n)
{
bool prime=true;
int k=int(sqrt(n));
for(int i=2;i<=k;i++)
{
if(n%i==0)
{
prime=false;
break;
}
}
return prime;
}
(4)编制main函数,调用上面定义的3个函数,完成
输出1000以内的所有素数。
输出1000以内的所有回文数。
输出1000以内的所有回文素数。
若一个素数的反序数仍为素数,则称它为可逆素数。求10000以内的所有可逆素数。
参考解答:
#include<iostream>
#include<cmath>
using namespace std;
bool isPalindrome(int);//自定义函数的原型(即函数声明)
int reverse(int);
bool isPrime(int);
int main()
{
int m;
cout<<"(1)输出1000以内的所有素数"<<endl;
for(m=2;m<1000;++m)
{
if(isPrime(m))
cout<<m<<'\t';
}
cout<<endl<<endl;
cout<<"(2)输出1000以内的所有回文数"<<endl;
for(m=2;m<1000;++m)
{
if(isPalindrome(m))
cout<<m<<'\t';
}
cout<<endl<<endl;
cout<<"(3)输出1000以内的所有回文素数"<<endl;
for(m=2;m<1000;++m)
{
if(isPalindrome(m)&&isPrime(m))
cout<<m<<'\t';
}
cout<<endl<<endl;
cout<<"(4)求1000以内的所有可逆素数"<<endl;
for(m=2;m<1000;++m)
{
if(isPrime(m)&&isPrime(reverse(m)))
cout<<m<<'\t';
}
return 0;
}
bool isPrime(int n)
{
bool prime=true;
int k=int(sqrt(n));
for(int i=2;i<=k;i++)
{
if(n%i==0)
{
prime=false;
break;
}
}
return prime;
}
bool isPalindrome(int n)
{
bool palindrome=false; //先默认不是回文数
if(reverse(n)==n)
palindrome=true;
return palindrome;
}
int reverse(int x)
{
int m=0;
while(x>0)
{
m=m*10+x%10;
x=x/10;
}
return m;
}
(5)将上面自定义的3个函数放到一个cpp文件中,而将main()函数放在另外一个cpp文件中,改造上面的工作,用多文件的方式组织程序。
(略)
=================== 迂者 贺利坚 CSDN博客专栏================= |== IT学子成长指导专栏 专栏文章的分类目录(不定期更新) ==| |== C++ 课堂在线专栏 贺利坚课程教学链接(分课程年级) ==| |== 我写的书——《逆袭大学——传给IT学子的正能量》 ==| ===== 为IT菜鸟起飞铺跑道,和学生一起享受快乐和激情的大学 ===== |