漫步数学分析十五——连续

连续函数有一个重要的性质,那就是当 x 靠近x0时, f(x) 靠近 f(x0) (如图 ??? 所示)。另一方面,在图2中,即使 x 非常靠近x0,但是 f(x) 可能不会靠近 f(x0)


这里写图片描述
图1

为了精确地定义连续,首先需要定义函数在一个点处的极限概念。

1 ARn,f:ARm ,假设 x0 A 的一个聚点,我们说bRm f 在点x0处的极限,写作

limxx0f(x)=b

如果给定任意的 ε>0 ,存在 δ>0 (依赖于 f,x0,ε )使得对所有的 xA,xx0 xx0<δ 意味着 f(x)b<ε

直观上讲就是当 x 靠近x0时, f(x) 靠近 b 。我们也可以写成当xx0时, f(x)b 。(将这个概念与序列极限的概念进行比较)注意如果 x0 不是一个聚点,那么将没有 xx0,xA 靠近 x0

注意极限 limxx0f(x) 可能不存在;例如,令 f:R{0}R 定义为如果 x<0,f(x)=1 ,如果 x>0,f(x)=2 ,那么0是 R{0} 的聚点但是 limx0f(x) 不存在。然而,如果 x0 时, f(x)=1 ,并且 f(0)=0 ,那么 limx0f(x)=1 。另一个例子是 f:R{0}R,f(x)=sin(1/x) ;这个函数越靠近0振荡越快,所以不会靠近任何极限。然而,如果 limxx0f(x) 存在,那么它是唯一的。假设 limxx0f(x)=b,b ,为了说明 b=b ,令 ε>0 ,那么存在 δ1>0,δ2>0 使得 xx0<δ1 意味着 f(x)b<ε/2 xx0<δ2 意味着 f(x)bε/2 ,令 δ=min{δ1,δ2} ;那么 xx0<δ 意味着 bbbf(x)+f(x)b<ε/2+ε/2=ε ;因此对任意 ε,bb<ε ,所以 bb=0 或者 b=b

接下来我们开始定义函数在一点处连续的概念。

2 ARn,f:ARm,x0A 。我们说 f x0处连续,如果 limxx0f(x)=f(x0) 或者 x0 不是 A 的一个聚点。

注意除了极限limxx0f(x)存在外,还需要指定它的值。定义2可以表述如下: f 在定义域内的点x0处连续,当且仅当对于所有的 ε>0 ,存在 δ>0 使得对所有的 xA,xx0<δ 意味着 f(x)f(x0)ε 。在定义1 中,我们需要说明 xx0 ,因为 f 没有必要在x0处有定义,但是这里就不需要说明 xx0 ,因为我们的条件在 x=x0 时也是成立的。

这里介绍有用的符号。假设 f (x0,a]R上有定义,那么

limxx0f(x)=b

意味着 f 在定义域A=(x0,a]中的极限。换句话说,对于每个 ε>0 ,存在 δ>0 使得 |xx0|<δ x>x0 意味着 |f(x)b|<ε ,因此我们取 x 从都右边靠近x0 f 的极限。同样地,我们可以定义

limxx0f(x)=b

x 从左边靠近x0时的极限。

3 函数 f:ARm 在集合 BA 上连续,如果 f B的每个点处都连续。如果我们只说 f 是连续的,这意味着f在它的定义域 A 上连续。

还有许多其他的方式来形式化连续的概念,其中有一个非常重要,因为它只涉及到拓扑学(也就是开集),所以它应用更广。

1 f:ARm 是一个映射,其中 ARn 是任意集合,那么下面的断言是等价的。

  1. f A上连续
  2. 对于 A 中的每个收敛序列xkx0,我们有 f(xk)f(x0)
  3. 对于 Rm 中的每个开集 U f1(U)A A 而言是相对开的;即,对某个开集V,f1(U)=VA
  4. 对于每个闭集 FRm,f1(F)A A 而言是相对闭的;即,对某个闭集G,f1(F)=GA

实际上,定理中的 (ii) 与极限有类似的版本,即如果 f:ARm 并且 x0 A 的聚点,那么

limxx0f(x)=b

当且仅当对于每个收敛到 x0 的序列 xkA

limkf(xk)=b

从定理中可以看出,前面文章中提到的连续路径与这里定义的连续是一致的。之后的文章会介绍一些定理,根据这些定理我们就可以很容易的建立一般函数的连续性。

现在我们简要讨论一下定理1。首先, (i) (ii) 的等价性比较明显,因为 (i) 意味着 x 靠近x0 f(x) 靠近 f(x0) 。 而 (ii) 除了是让序列 x 靠近x0外其余都是一样的。如果我们将开集看做闭集的补的话,断言 (iii) (iv) 是一样的。

现在我们看一下 (iii) 告诉了我们什么,选择一个小的开集 U ,它包含f(x0),那么 f1(U) 为开集意味着在 x0 周围有一个开邻域并含于 f1(U) 。对于这个邻域中的 x ,它被映射到U中,而集合 U 表示的是f(x0) 附近的点。换句话说,在用 U 作为f(x) f(x0) 的临近度量时,如果 x 充分靠近x0(即, xf1(U) ), f(x) 将充分靠近 f(x0) ,因此这与 (i) 表达的想法是一致的。

1 f:RnRn 是单位函数 xx ,说明 f 是连续的。

固定一点 x0R ,根据定义,我们必须对给定的 ε>0 找到 δ>0 ,使得 xx0<δ 意味着 f(x)f(x0)<ε 。但是,如果我们选择 δ=ε ,那么定义就变成了 xx0<ε 意味着 xx0<ε ,因此 f 是连续的。

2 f:(0,)R;x1/x ,说明 f 是连续的。

固定一点 x0(0,) ;即, x0>0 。为了确定如何选择 δ ,我们考虑下面的表达式

|f(x)f(x0)|=1x1x0=|x0x||xx0|

如果 |xx0|<δ ,那么我们将得到

|f(x)f(x0)|<δ|xx0|=δxx0

接下里,如果我们令 δ<x0/2 ,那么我们将得到 x>x0/2 (图 ??? ),所以 δ/xx0<(2δ/x20) 。现在给定 ε>0 ,选择 δ=min(x0/2,εx20/2) ,那么 f x0处是连续的。


这里写图片描述
图2

3 f:RnRm 是连续的,说明 {xRn|f(x)<1} 是开的。

上面的集合实际上就是 f1{y|y<1} ,它是一个开集的逆像,根据定理1 (iii) 可知它是开集。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值