PCL库初步使用(1):小试牛刀

本文介绍了如何使用PCL库处理地形点云数据,包括将DEM数据转为.pcd文件、法向量估计、曲面重建及三维显示。通过pcl_normal_estimation和pcl_poisson_reconstruction工具,以及Paraview软件进行可视化。

   本次试验的目的是利用PCL库来重建地形点云数据,并进行显示。总体流程是1)把DEM数据导入PCL的数据格式.pcd文件中;2)进行法向量估计;3)重建曲面;4)三维显示。

    1)写入pcd

### 如何使用PCL中的 `pcl::Histogram<44>` `pcl::Histogram<T>` 是 PCL 中用于表示直方图的一个模板类,其中 T 表示直方图的维度数。对于 `pcl::Histogram<44>` 来说,T 的值为 44,意味着该直方图有 44 维度。以下是其基本使用方法: #### 定义与初始化 可以通过构造函数来定义并初始化一个具有指定数量维度的直方图对象。 ```cpp #include <pcl/features/histogram.h> // 创建一个44维的直方图对象 pcl::Histogram<44> histogram; ``` #### 设置直方图数据 可以逐个设置每一维的数据值。 ```cpp for(int i = 0; i < 44; ++i){ histogram.histogram_[i] = /* 设定具体数值 */; } ``` 注意,在实际应用中,这些数值通常来源于某些特征提取算法的结果[^1]。 ### 使用PCL的KD树实现最近邻检索 PCL 提供了基于 FLANN 实现的 KD 树功能,能够快速完成最近邻点查找的任务。下面是一个简单的例子展示如何利用 PCL 中的 KD 树进行单点或多点的最近邻检索。 #### 单点最近邻检索 ```cpp #include <pcl/kdtree/kdtree_flann.h> #include <vector> #include <iostream> int main(){ // 假设我们有一个三维点云作为数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 添加一些测试点到 point cloud 数据集中... for(float z=0.0f;z<=1.0f;z+=0.1f){ cloud->push_back(pcl::PointXYZ(0,0,z)); } // 构建 kd-tree 对象 pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; // 将点云加载至 kd-tree kdtree.setInputCloud(cloud); // 查询点 pcl::PointXYZ queryPoint(0,0,0.5); int K = 1; // 查找最近的邻居数目 std::vector<int> pointIdxNKNSearch(K); // 存储索引 std::vector<float> pointNKNSquaredDistance(K); // 存储距离平方 if(kdtree.nearestKSearch(queryPoint,K,pointIdxNKNSearch,pointNKNSquaredDistance)>0){ for(size_t i=0;i<K;++i){ std::cout << "Nearest neighbor["<<i<<"] at position " << cloud->points[pointIdxNKNSearch[i]].x << ' ' << cloud->points[pointIdxNKNSearch[i]].y << ' ' << cloud->points[pointIdxNKNSearch[i]].z << '\n'; } } return 0; } ``` 此代码片段展示了如何构建一个 KD 树,并执行针对单一查询点的一次性最近邻搜索操作[^2]。 #### 多点最近邻检索 如果需要对多个点同时做最近邻检索,则只需重复调用 `nearestKSearch()` 方法即可。 ```cpp std::vector<pcl::PointXYZ> queries = {/*一系列查询点*/}; for(auto& qp : queries){ if(kdtree.nearestKSearch(qp,K,pointIdxNKNSearch,pointNKNSquaredDistance)>0){ // 输出结果逻辑同上 } } ``` 以上即为通过 PCL 内的 KD 树机制达成最近邻检索的基本方式[^3]。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值