关闭
当前搜索:

Caffe2:使用Caffe构建LSTM网络

一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络。...
阅读(807) 评论(0)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(249) 评论(0)

OpenCV: OpenCV人脸检测框可信度排序

使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度...
阅读(555) 评论(0)

OpenCV:OpenCV目标检测Boost方法训练

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在 每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。...
阅读(497) 评论(0)

支持向量机的近邻理解:图像二分类为例(3)

在图像识别领域,灰度图像被称为传说中的2维张量,任意图像为由所有二类图像构成的这个二维张量空间内的一个点。由人类专家完成图像属性归纳,把二维张量空间图像的特征显式的归结为一维张量空间的n维向量上,被称为特征提取。一般提取的特征并不一定能在n维向量空间中线性可分,这就需要再由模型进行一次映射,把向量样本转换到新的空间实现线性可分。...
阅读(514) 评论(0)

支持向量机的近邻理解:图像二分类为例(2)

从可见样本归纳出假设空间,与事实空间一般不会相同,这就意味着泛化是个概率性的问题。在图1中的例子中可以看出,严格来说,符合专家直觉特征提取过程并不符合甚至可视样本空间的要求,二维线性不可分映射到三维向量空间线性可分是对特征提取的弥补。 一切直觉可计算的,便是递归可计算的。既然符合直觉的特征提取看似永远不能满足仅仅是可见样本空间的要求,就使用一劳永逸的方案,使用模型来解决特征空间的可描述性。...
阅读(785) 评论(0)

支持向量机的近邻理解:图像二分类为例(1)

一个古老的哲学原理:世界并不是以小包的形式来到我们面前,除非遍历整个空间,任何训练得到的模型都是过拟合的。面对学习问题,首先面对这一个空间的认知问题,对空间结构的认识来自于接口,而全面的认识来自于遍历。 在认识一个未知空间之前,一般的套路是由接口获取的数据对这个空间进行简单假设,迭代修改理解规则,最后到遍历。...
阅读(594) 评论(0)

AdaBoost--从原理到实现(Code:Python)

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法...
阅读(4538) 评论(0)

DNN:逻辑回归与 SoftMax 回归方法

为什么使用SoftMax方法:因为反向传播和更新方法简单,更直接且直观。 对于多类分类问题,是建立一个 软回归分类器还是建立多个二分类器呢?这依赖于你的多类是否互斥,软回归 分类器对集合的分类是划分而不是覆盖。 ................... 考虑一个计算机视觉的问题,如果你对图像分类 ,类别是 室内、室外市区、室外草地场景,你将使用软回归还是三个二分类器?若类别是室外场景、黑白图像、有人的图像,又将使用哪种方式? 答案是 第一种分类使用软回归,第二种分类使用多个二分类器,因为第一个类别集合是划分,...
阅读(5428) 评论(0)

DNN结构演进History—CNN-GoogLeNet :Going Deeper with Convolutions

GoogleNet的研究点是引入了Inception结构,构建网络中的网络,使网络稀疏化,使CNN网络更像一个“神经元-网络”。因此可以实现:看起来更深,其实更稀疏,全局性能更好的网络。在数学上表示为,把稀疏网络转化成局部稠密的网络,加快计算速度。 本文提出了一种新的分类和检测的新网络。该网络最大的特点就是提升了计算资源的利用率。在网络需要的计算不变的前提下,通过工艺改进来提升网络的宽度和深度。最后基于Hebbian Principle和多尺寸处理的直觉来提高性能。...
阅读(1507) 评论(0)

CVPR2015深度学习回顾

ConvNet革命:一个网络预训练;计算机视觉的开源深度学习:Torch VS Caffe;嵌入大脑的视频游戏引擎:面向机器智能的不同路径;深度场景CNNs物体检测器;CVPR无意之事:ArXiv出版狂热 & 百度惨败。...
阅读(561) 评论(0)

ANN:DNN结构演进History—RNN

RNN通过引入神经元定向循环用于处理边变长问题,由此被称为递归网络; 再通过其他神经元(如果有自我连接则包括自身)的输入和当前值的输入,进行加权求和(logit)之后重新计算出新的行为,保存之前记忆。 通过时间轴展开成类似于FNN的新构架,因此可以使用BP算法进行网络训练; 而根据时间展开长序列会产生极深FNN,容易产生梯度的消失与爆炸问题,因此引入了LSTM-长短期记忆,保持一个常数误差流,以此保证梯度的不会爆炸消失; 用于恒稳误差,通常使用一个门单元进行误差流控制。...
阅读(963) 评论(0)

最优化:**回归/拟合方法总结

回归分析是一种预测性的建模技术,研究因变量(目标)和自变量(预测器)之间的关系。通常用于预测分析,时间序列模型以及发现变量之间的因果关系。 1. Linear Regression线性回归 2.Logistic Regression逻辑回归 3. Polynomial Regression多项式回归 4. Stepwise Regression逐步回归 5. Ridge Regression岭回归 6. Lasso Regression套索回归 7.ElasticNet回归 8.多类分类的SoftMax回...
阅读(4186) 评论(0)

使用OpenCV 随机森林与GBDT

随机森林顾名思义,是用随机的方式建立一个森林。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的。...
阅读(1723) 评论(1)

VS2013(Win10X64)-配置编译Caffe

2014年4月的时候自己在公司就将Caffe移植到Windows系统了,今年自己换了台电脑,想在家里也随便跑跑,本来也装了Ubuntu可以很方便的配置好,无奈在家的风格是“娱乐的时候抽空学习”,所以移植到Windows还是很有必要的。但是,公司禁止将公司内部资料带出,很多地方又都忘记了,周末磨了一天终于移植完,本篇为记录将Caffe移植至Windows7 x64系统下的一些关键步骤。下面介绍如何从源码建立VS2013工程。...
阅读(4539) 评论(0)

ANN:ML方法与概率图模型

— 产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs — 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM CRF条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。...
阅读(2200) 评论(0)

决策树构建算法之—C4.5

C4.5相比于ID3算法,改进:1.C4.5用的是子树信息增益率。2.在决策树构造过程中进行剪枝。3.对非离散数据也能处理。4 能够对不完整数据进行处理。 C4.5算法的优点是:产生的分类规则易于理解,准确率较高。 C4.5算法的缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。...
阅读(635) 评论(0)

ML:流形学习

流形在某一点的维度就是该点映射到的欧氏空间图的维度(定义中的数字n)。连通流形中的所有点有相同的维度。有些作者要求拓扑流形的所有的图映射到同一欧氏空间。这种情况下,拓扑空间有一个拓扑不变量,也就是它的维度。其他作者允许拓扑流形的不交并有不同的维度。 自从2000年以后,流形学习被认为属于非线性降维的一个分支。众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Linear Embedding)。...
阅读(878) 评论(0)

PythonOpencv-分类器—SVM,KNearest,RTrees,Boost,MLP

原文链接: 上一篇文章,不是很详细,这一篇解释的清晰...
阅读(808) 评论(0)

PythonOpenCV--Rtrees随机森林

原文链接:Python opencv实现的手写字符串识别--SVM 神经网络 K近邻 Boosting、...
阅读(1497) 评论(0)
28条 共2页1 2 下一页 尾页
    个人资料
    • 访问:950503次
    • 积分:12877
    • 等级:
    • 排名:第1148名
    • 原创:296篇
    • 转载:294篇
    • 译文:29篇
    • 评论:195条