参考文章:http://blog.csdn.net/hua_007/article/details/45368607
使用OpenCV进行人脸识别时,使用
casecade.detectMultiScale函数,可输出每个检测框的置信度
代码段:
const int numReserve = 4;
std::vector< int > rejLevel;
std::vector<double> levelW;
cascade.detectMultiScale( smallImg, eyes, rejLevel, levelW, 1.1, 3, 0, cv::Size(), cv::Size(), true);
cout << "eyes size=:" << eyes.size() << endl;
// 重新排序
std::vector<std::pair<float, int> > eyeConfi;
for (int i = 0; i < (int)(eyes.size()); i++){
eyeConfi.push_back(std::make_pair(levelW[i], i));
}
std::qsort(&eyeConfi[0], eyeConfi.size(), sizeof(eyeConfi[0]), cmpMapWishchin);
//重新获取,只取前四个
for (int i = 0; i < (int)(eyes.size()) && i<numReserve ; i++)
{
cv::Rect eyeSin = eyes[eyeConfi[i].second];
eyesFinal.push_back(eyeSin) ;
}
函数原型:
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size(),
bool outputRejectLevels=false );
cmp函数:
int cmpMapWishchin(const void *p1, const void *p2)
{
int v = 1;
std::pair<float, int > *pp1, *pp2;
pp1 = (std::pair<float, int > *) p1;
pp2 = (std::pair<float, int > *) p2;
//最大值排序
if (pp1->first - pp2->first < 0){
v = 1;
}
else{
v = -1;
}
return (v);
}
函数的原理是这样的(个人理解,有错误请指教):
首先一个level一个level地测试样本,然后每一个level给一个对应的得分,也就是levelWeight,如果这个weight低于或者高于对应level的threshold,则被抛弃。
坚持到最后一个level并且在最后一个level仍然满足threshold的框就是正确的脸(正样本)。
所以,人脸的分应该是这样:level越大,分数越高,在相同的level,levelWeight越大分数越高。
但是实际上真正的人脸都是能坚持到level20(最后一个level)的,所以只比对最后一个level的所有大于1的框的levelWeight进行比对就可以知道脸的得分啦~
试验结果: