关闭
当前搜索:

CNN结构:Windows使用FasterRCNN-C++版本

参考文章:Windows下VS2013 C++编译测试faster-rcnn。 Windows版本纯C++版本的FasterRCNN比较难找,且懒得翻译Matlab版本代码,暂时可用的是这个项目:Windows下VS2013 C++编译测试faster-rcnn。...
阅读(60) 评论(0)

CNN结构:色彩特征提取-从RGB空间到HSV空间(色彩冷暖判断)

色彩冷暖判断 不管是什么色相,都有冷暖之分,即使是蓝色也有偏暖的蓝,即使是红色也有偏冷的红。 色彩冷暖具有相对性 色彩明度变高/变低的过程,色彩冷暖倾向会变得不明显。 色彩纯度变高,冷暖倾向变明显。...
阅读(44) 评论(0)

CNN结构:色温-冷暖色的定义和领域区分(一)

色温的单位是开尔文。并可以在颜色对造表上查的,可以通过分光计算出来。检测工具为色温计。黑体辐射体的色温等于它表面的开尔文温度。 色温(colo(u)r temperature)是可见光在摄影、录像、出版等领域具有重要应用的特征。光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。...
阅读(90) 评论(0)

CNN结构:色彩空间建模-色彩空间分析

关于色彩分析,引出了专门的数学基础。整个过程给出了完备的数学阐述,虽然没有试验数据,论述的相当精彩。...
阅读(99) 评论(0)

初中生问题:求任意凸多边形的交叉面积

多边形相交的面积,即是 所有交点和内点组成的多边形连成的面积。再把多边形拆分成三角形,根据s2 = p * (p - a) * (p - b) * (p - c);计算出累加面积。...
阅读(1304) 评论(0)

CNN结构:用于检测的CNN结构进化-结合式方法

类别失衡是影响 one-stage 检测器准确度的主要原因。那么,如果能将“类别失衡”这个因素解决掉,one-stage 不就能达到比较高的识别精度了吗? 何凯明团队采用 Focal Loss 函数 来消除这个主要障碍。 该团队设计并训练了一个简单的密集目标检测器—RetinaNet,是由一个骨干网络和两个特定任务子网组成的单一网络,骨干网络负责在整个输入图像上计算卷积特征图,并且是一个现成的卷积网络。 第一个子网在骨干网络的输出上执行卷积对象分类;第二个子网执行卷积边界框回归。...
阅读(533) 评论(0)

ES:AI 注释

为AI做注解:         AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书。         在一个算法工程师 和一个硬件工程师之间,把 不鲁棒 与不稳定 两个 形容词 联系起来,这就是转换思维的必要性。科普的本质是 用一种语法 来解释另一种语法,并保持语义不变。...
阅读(208) 评论(0)

ES : 软件工程学的复杂度理论及物理学解释

对于孤立体系而言,在其中发生的任何反应变化必然是自发的。热力学第二定律告诉我们:在孤立体系中发生的任何变化或化学反应,总是向着熵值增大的方向进行,即向着△S孤立0的方向进行的。而当达到平衡时△S孤立=0,此时熵值达到最大。...
阅读(161) 评论(0)

CNN结构:用于检测的CNN结构进化-一站式方法

人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型。 YOLO的特别之处,在于把检测问题表示为一个分类问题,而不是以往的寻找绑定框/包围盒+分类的问题。使用一个网络实现检测的功能,成为一个端到端的图像检测系统。...
阅读(491) 评论(2)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(245) 评论(0)

AI:IPPR的数学表示-CNN结构进化(AlexNet、InceptionNet、ResNet、InceptionResNet)

CNN通过训练卷积层,训练得到滤波器-卷积核,本质上是对于某种特定的模式有响应,响应最强的特征图,就是对应的分类。 模式识别要求参数更多更准确,因此CNN更大更长,结构也优化为更稀疏。 通过反复堆叠卷积层和MaxPooling层,堆叠出高精度的VGG-Net。而GoogleInceptionNet则直接构建稀疏结构,实现神经元网络,增强稀疏性。基于同等映射不减低精度思想,高速-直连网络,残差网络以概率投票方式实现另一种稀疏效果,得到更高精度。DenseNet更是扩展了直连思想。...
阅读(805) 评论(0)

AI:IPPR的数学表示-CNN可视化语义分析

ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的实际意义,甚至不能以解析函数的形式表示。而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义。可以跳过函数形式直接进行语义级别的解析。 可视化是直观理解的一个重要方式,CNN可视化可以辅助对特定数据集的特定网络进行语义级别的解析。...
阅读(132) 评论(0)

AI:IPPR的模式生成-学习/训练方式(基本结构)

模式识别的专家系统         模式识别的传统意义的专家系统,是由人类专家构建知识,使用谓词逻辑,构建的超大型知识图谱,并由已知图谱推到待遍历路径和节点。专家问题的既然是人类专家获取的知识,必然有力粒度分范围的限制,在某些情况下,推演可能会导致矛盾:不同的路径会产生矛盾-相反的结果。或者粒度较大时,问题空间不能被遍历,导致无法解析。...
阅读(1639) 评论(0)

AI:IPPR的数学表示-CNN结构分析(基本结构)

深度学习以“数据驱动”范式颠覆了“人造特征”范式,完成“特征学习”,这是一个重大的进步。但与此同时,它自己又陷入了一个“人造结构”窠臼中。06年hinton教授发表在nature上的最初的论文,多层压缩映射。给出的深度学习的方案是无监督学习获取网络结构,之后再通过有监督学习优化参数,DNN网络的引爆点恰恰是结构学习。大量利用未标记数据学习网络结构是深度学习最初的构想。   但无论Hinton教授组最初设计的AlexNet,还是后来的VGG,GoogLeNet,ResNet等等,都是富有经验的专家人工设计出来...
阅读(277) 评论(0)

AI:IPPR的数学表示-CNN参数分析

那么放开形式的限制,使用不受限制的网络来代替特定形式的网络。比如使用不受SIFT函数形式限制的局部链接层取代上图中的SIFT特征提取层,使用数据驱动来完成类似的功能,得到参数化的网络。 愈来愈多的类别和要求更高的精度要求网络越来越大,越变越胖,而随着参数暴涨,网络训练更加困难,分治法又有了用武之地。为使参数变少,使训练变得相应简单,网络逐渐变深,变得更长。...
阅读(385) 评论(0)

AI:IPPR的数学表示-CNN方法

既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程。越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法——CNN方法。IPPR又从分治法回到一站式方法。...
阅读(295) 评论(0)

AI:PR的数学表示-传统方法PR

在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。 对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。...
阅读(307) 评论(0)

AI:模式识别的数学表示(集合—函数观点)

模式函数是一个从问题定义域到模式值域的一个单射。 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4,其模式函数为 f( x ) = { X——>Y }|{ X = ImageNet的图片,Y={ 1860个类的标记 } } 是一个单射函数。...
阅读(219) 评论(0)

模式识别两种方法:知识和数据

(每一个作者都希望自己的所见所闻是正确的,这也仅仅是希望而已。因为这个希望后面有更深层的东西,自己的成果,别人的敬重,以及多年辛苦树立的权威,以及科学技术人员不能决定自己命运和方向的自卑感。 根本在于系统构架上。专家系统一般要求固定的槽值,用于描述类和对象。而ML系统,则在合适的时刻可以对特征进行空间变换,进行特征变化和特征选择。此外,专家系统一般使用确定推理方式,在矛盾处进行对象分解,从更小的粒度重新解析矛盾,而ML系统则放松了模型要求,在一定的特征组合层面,满足PAC概率正确性即可。...
阅读(738) 评论(0)
    个人资料
    • 访问:947297次
    • 积分:12826
    • 等级:
    • 排名:第1207名
    • 原创:294篇
    • 转载:292篇
    • 译文:29篇
    • 评论:195条