计算机基础:离散数学和完备性

计算机的起源和数学基础有很深的渊源,深挖下去可以探讨到数学基础的集合论、哥德尔取得辉煌成果的证明论和模型论。也和哲学本身有有着基础层面的联系。

数理逻辑

哲学形式化基础: 数理逻辑。
不可形式化的过程和结论都是违背认知的,涉及到知识论的基础讨论。近现代哲学形式化的基础基于数学的数理逻辑。数理逻辑的物质基础是集合论。
参考:人工机器-人工智能中的机器学习方法;
数理逻辑的主要分支包括:逻辑演算(包括命题演算和谓词演算)、模型论、证明论、递归论和公理化集合论。古典哲学系统的性质在数理逻辑中得到了形式化解释,而数理逻辑。
数理逻辑的基础设施为命题演算和一阶数理逻辑。一阶逻辑的元逻辑结果为:1.定理的可靠性,一阶逻辑内的定理在论域内是完全有效的;2.一致性,逻辑定理与其规约(全称量词约去)的命题演算是一致的;3.完全性,一阶逻辑下凡是有效的公式都是定理,都可以由公理证明;4.紧致性,公式集г是一致的,当且仅当它的每一有穷子集是一致的。
从定理到命题的规约过程为归纳,从命题到定理的过程叫演绎。归纳法企图使用论域规约到一般概念即全域,演绎是命题展开为全域定理的过程。

模式识别

10年来,人工智能在模式识别的机器学习中的深度神经网络学习即深度学习方面取得实用性的成果,甚至催生了类似商汤旷世这种仅在人脸识别方面就估值数十亿美元的商业公司。

机器学习基本理论,可得到基础数学的泛函分析的诸多指点。

人并非强过任何一个人造智能的单一性状,人的智能极大地依赖于人类感知器和效应器丰富的低阶智能。

现阶段,人工智能的难点不是在基础算法和理论框架上,而是匹敌人的感知器和效应器能力。

不能仅凭一个计算机中的算法创造类人人工智能,这涉及到更广泛的系统论和范畴论的知识。

开放性

包括我在内,人类中有无数的笨蛋,且无可救药的那种。基本表现是记忆力不够,即数据检索能力和效率不行,决策能力差,即推理能力不行。而计算机在这些方面就好太多。

人是必定不完备的,在语法和语义上,而计算机在广义语义上是不完备的,在语法和特定语义上是完备的。

图灵机

图灵机的停机问题,哥德尔的不完备性定理,以及会说话的中文屋子,和强人工智能和人工智能是否可以实现。
实现问题很重要,更重要的是在时间尺度上的完备性问题。在人类文明的历史中,文明是一个从无到有的过程,教育起了重大作用。知识文明以及智能密不可分,但自然界以生物多样性保留了这个智能的生产过程,从0到1。人类智能是个自生长过程,是个生存的衍生品。
人工智能就麻烦的多,是个搜索问题,且不说依据熵增原理,哥德尔的理论给出的暗示是人工智能倾向于衰弱,即维持都相当困难。人工智能的生命形式与人类不同是其次的,重要的是人工智能的生态系统与人类不同,人面对人工智能的时候,面对的是不需要人类基本生存条件的敌人。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页