在mnist最佳实践中,使用的是全连接网络结构。在Tensorflow中训练一个卷积神经网络的流程和训练一个全连接神经网络没有任何区别。卷积神经网络和全连接神经网络的唯一区别就在于神经网络中相邻两层的连接方式。
全连接网络的问题
使用全连接神经网络处理图像的最大问题在于全连接层的参数太多。参数过多,除了导致计算速度减慢,还很容易导致过拟合问题。
卷积神经网络
卷积神经网络中前几层中每一个节点只和上一层中部分的节点相连,如下图所示:
有效地减少神经网络中参数个数。
卷积神经网络主要由一下5种结构组成:
- 输入层:在处理图像时,它一般代表了一张图片的像素矩阵
- 卷积层:卷积层中每一个节点的输入只是上一层神经网络的一小块(通常的大小有3*3或5*5)。卷积层试图将神经网络中的每一小块进行更加深入地分析从而得到抽象程度更高的特征
- 池化层:池化层(pooling)不会改变三维矩阵的深度,但是它可以缩小矩阵的大小,进一步