Tensorflow基础:卷积层和池化层

本文介绍了卷积神经网络(CNN)的基本结构,包括卷积层和池化层,阐述了它们在图像处理中的作用。卷积层通过参数共享减少参数数量,池化层则用于降低计算复杂度并防止过拟合。Tensorflow提供了实现这些操作的支持,包括卷积层的前向传播和池化层的两种主要类型:最大池化和平均池化。
摘要由CSDN通过智能技术生成

mnist最佳实践中,使用的是全连接网络结构。在Tensorflow中训练一个卷积神经网络的流程和训练一个全连接神经网络没有任何区别。卷积神经网络和全连接神经网络的唯一区别就在于神经网络中相邻两层的连接方式

全连接网络的问题

使用全连接神经网络处理图像的最大问题在于全连接层的参数太多。参数过多,除了导致计算速度减慢,还很容易导致过拟合问题。

卷积神经网络

卷积神经网络中前几层中每一个节点只和上一层中部分的节点相连,如下图所示:
cnn
有效地减少神经网络中参数个数。

卷积神经网络主要由一下5种结构组成:

  1. 输入层:在处理图像时,它一般代表了一张图片的像素矩阵
  2. 卷积层:卷积层中每一个节点的输入只是上一层神经网络的一小块(通常的大小有3*3或5*5)。卷积层试图将神经网络中的每一小块进行更加深入地分析从而得到抽象程度更高的特征
  3. 池化层:池化层(pooling)不会改变三维矩阵的深度,但是它可以缩小矩阵的大小,进一步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值