目标检测--Feature Pyramid Networks for Object Detection

本文介绍CVPR2017论文《Feature Pyramid Networks for Object Detection》。该文提出一种改进的目标检测方法,通过融合多尺度特征图提高小目标检测性能。采用特征金字塔网络(FPN),在不同层级特征图上独立进行目标预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2017
Feature Pyramid Networks for Object Detection
https://arxiv.org/abs/1612.03144
Code will be made publicly available

本文是对 Faster R-CNN 在目标检测问题上的进一步完善。Faster R-CNN 有两个步骤, Region Proposal Network, RPN以及 Fast R-CNN,在这两个步骤我们都利用更多的卷积特征图信息来提升RPN和 Fast R-CNN的效果。具体是怎么利用的了?主要是参考 Fully Convolutional Networks for Semantic Segmentation 的思想,对 coarse outputs 进行放大,分别用对应尺寸的卷积特征图对 outputs 进行微调,得到更好的结果。

这里写图片描述

上图主要对比了一下针对多尺度问题各种解决思路。
(a)有图像金字塔生产对应的特征图,在这些特征图上处理预测
(b)对单尺度图像使用 ConvNets 计算卷积特征,最后在最后一层卷积特征图上进行预测,该特征具有一定的 scale invariance, 但是如果有其他不同尺寸的卷积特征图效果会更好。
(c)使用多个卷积特征图进行预测,Single Shot Detector (SSD) 就是这么干的。但是SSD 使用的卷积特征图只是自己后来加入的网络层,前面的卷积特征图没有使用,而这些卷积特征图对于检测小目标至关重要。
(d) 我们提出的 Feature Pyramid Network (FPN) 很好的利用了各个卷积特征图,逐步微调。

这里写图片描述
通过skip connections 利用各个卷积特征图的思想以前就有了,那么我们和前人有什么不同了? 那就是我们在output 以及后续放大的 output 上独立检测目标。 predictions made independently at all levels

我们是怎么将不同卷积特征图联系起来的?
这里写图片描述

对于一个 coarser-resolution 特征图,我们通过 upsampling 放大两倍,然后将它与对应尺寸的卷积特征图通过 element-wise addition 得到新的特征图。注意这里的对应尺寸的卷积特征图是通过 1×1 convolutional layer 来降低channel dimensions 得到的。因为每个尺寸有很多个 channel 的 卷积特征图。

本文主体思路基本就这样了。剩下就是一些实验细节对比
这里写图片描述
这里写图片描述

和其他模型在目标检测上的对比
这里写图片描述

Instance segmentation proposals
这里写图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值