语义分割--Efficient Deep Models for Monocular Road Segmentation

Efficient Deep Models for Monocular Road Segmentation
code: https://lmb.informatik.uni-freiburg.de/Publications/2016/OB16b/

针对路面检测和分割问题,本文结合FCN 和 U-Net 提出一个网络 Up-Convolutional Networks,在速度和精度方面得到不错的效果

这里写图片描述
KITTI benchmark lane/road segmentation tasks,分为三类:背景,路面,车道线

Up-Convolutional Network 网络结构设计主要参考 FCN
这里写图片描述
网络具体参数设置:
这里写图片描述

C. Optimizing the Use of Parameters
我们做的主要改进在一下几个方面:
1)Parameter reduction: FCN 在特征提取阶段使用了 VGG16 作为基础,这个网络有4096个 7*7 大小的滤波器,这个大尺寸滤波器计算量比较大。 这里我们将 FC-conv 的滤波器数量从 4096 降低到 1024, 滤波器尺寸由 7*7 变为 3*3, 这样网络的参数减少一些,计算量也相应降低,当然精度有所下降,我们在网络的其他地方来提高精度。
2) New refinement to improve system accuracy: 这里主要是参考 U-Net 设计思想,增加了网络放大层的宽度, we increase the width of the up-convolutional side of the network。 Previously our network has a 1 − to − 1 mapping, each refinement has the same number of filters and classes ( N_cl ).
这里写图片描述

D. Data Augmentation
Scaling: scale the image by a factor between 0.7 and 1.4;
• Color: Add a value between −0.1 and 0.1 to the hue channel of the HSV representation.

Rotation and cropping 不适合路面检测情况,所以没有使用

E. Network Training
训练采用了分阶段进行,每个阶段在一个 Titan X GPU 使用了一天时间,总共使用了5天训练了整个网络

实验结果:
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值