💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
风电最大化消纳的热电联产机组联合优化控制研究
摘要:为了最大化提升风电的消纳能力,解决我国的弃风问题,提出了一种结合热电联产机组、风电机组、电锅炉和储热装置的综合能源系统。通过建立数学模型研究了3种不同运行方式下,系统对风电的消纳能力和热电联产机组的最佳运行模式。研究结果表明,仅通过热电联产机组自身调节的方式,系统的风电消纳能力只有77.9%;采用热电联产机组结合电锅炉相互调节的方式,可将风电消纳能力提升至92.8%;而采用热电联产机组、电锅炉和储热装置联合调节的方式,系统对于风电的消纳能力则达到97.3%。
关键词:
提高清洁能源利用比例是我国重要的能源发展战略,国家能源局提出到2050年非化石能源的利用比例超过50%,并预计在2060年实现碳中和。近年来我国的风电、太阳能等可再生能源利用比例逐年提高﹐但由于风能、太阳能等具有随机性、间歇性﹑出力变化快等特点﹐其大规模的集中并网增加
了电网的调峰难度1。据统计,2020年上半年,全国风电新增并网装机632万 k W,其中陆上风电新增装机526万 k W、海上风电新增装机106 万 k W。截止6月底,全国风电累计装机2.17 亿kW,其中陆上风电累计装机2.1 亿 kW、海上风电累计装机699万k W。虽然通过政府﹑电源侧和电网侧的共同协调﹐弃风问题得到了一定程度的缓解﹐但在个别省份弃风率超过10%[2]。风电渗透率迅速增加﹐其消纳已经成为影响我国风电产业持续健康发展的关键问题。
通过在热电联产机组侧配置储热装置,能达到解耦热电耦合特性的目的﹐提高电力系统优化配置能力,增强电网消纳风电的能力[12-141]。本文建立了基于最大化风电消纳的综合协调供热系统数学模型。综合系统中包含热电联产机组、电锅炉和储热装置,其结构如图1所示。
一、热电联产机组基本原理与风电消纳的耦合性
-
热电联产机组的高效性与灵活性挑战
热电联产(CHP)通过同时生产电能和热能,将能源利用效率提升至80%-90%。其核心在于分级利用能量:高品位热能发电,低品位余热供热。然而,传统CHP机组的电热耦合特性(如背压式机组固定热电比)限制了发电灵活性,导致在风电波动时难以快速调节出力。例如,背压式机组发电量完全由供热量决定,无法独立调节。 -
风电消纳的主要技术瓶颈
- 波动性与预测偏差:风电的随机性导致功率预测误差随装机容量增长。
- 地理逆向分布:风电基地多位于“三北”地区,远离东部负荷中心,特高压输电面临安全稳定挑战。
- 系统灵活性不足:常规机组调峰空间受限,CHP机组因“以热定电”进一步压缩调节能力。
二、风电-CHP联合优化的核心机制
-
储热装置的解耦作用
储热设备可打破CHP机组的热电耦合约束。例如,在风电出力高峰时储存热能,降低CHP发电需求,腾出电网容量消纳风电;低谷时释放热能补充供热。研究显示,配置储热后风电消纳率可从77.9%提升至97.3%。 -
电锅炉的灵活调节功能
电锅炉将富余风电转化为热能,直接参与供热系统。与储热联合运行时,系统可动态调整电/热出力比例。例如,某案例中电锅炉使风电消纳率提升14.9%(从77.9%至92.8%)。 -
多能源互补与需求侧响应
- 高载能负荷调控:如电熔镁炉参与调度,在风电过剩时增加用电负荷,减少弃风。
- 跨区域协同调度:通过多区域电热联合系统共享备用容量,优化联络线功率计划。西北地区案例显示,该策略可降低总体运行成本并减少弃风率。
三、优化控制策略与技术路径
-
多目标优化算法应用
- 模型构建:目标函数常包括风电消纳最大化、系统成本最小化、污染物排放最低等。例如,NSGA-II算法在内蒙古某电厂优化中平衡经济性与灵活性。
- 算法改进:改进灰狼算法(MOGGWO)通过简化种群更新机制,缩短求解时间60%以上。
-
不确定性处理与鲁棒优化
考虑风电预测误差,采用鲁棒多目标优化模型。例如,基于参数敏感区域方法构建的调度模型,通过细菌群体趋药性算法求解,使弃风惩罚成本降低23%。 -
预测控制与实时调度
- 模型预测控制(MPC) :滚动优化热电出力,结合煤耗指标实现经济性。某300MW机组仿真显示,供电煤耗率降低2.1%。
- 两阶段随机规划:日前阶段制定计划,实时阶段调整联络线功率,应对风电波动。
四、典型案例与实施效果
-
内蒙古某电厂熔融盐储热项目
- 配置:2台抽凝式CHP机组+熔融盐储热。
- 优化结果:侧重经济性时,供电成本降低12%;侧重灵活性时,风电消纳量增加18%。
-
西北地区多区域协同调度
- 模型:采用高斯混合模型生成风电场景集,结合交替方向乘子法(ADMM)求解。
- 效果:弃风率下降9.7%,运行成本减少8.3%。
-
吉林某热电联产系统
- 策略:分时电价+热价需求响应。
- 成果:低谷时段电负荷提升15%,风电利用率提高22%。
五、未来研究方向与挑战
-
多技术协同优化
当前研究多聚焦单一技术(储热或电锅炉),需探索储热、电锅炉、储能、氢能等多技术耦合系统。 -
智能控制算法深化
人工免疫系统、深度强化学习等新兴算法在热电负荷协调中的应用尚待突破。 -
政策与市场机制创新
完善调峰辅助服务市场,推动CHP机组参与电力现货市场,通过价格信号激励灵活性改造。
六、结论
通过储热解耦、电锅炉调节及多目标优化算法,CHP机组可显著提升风电消纳能力。典型案例表明,联合优化策略能使风电消纳率突破95%,同时降低运行成本与污染物排放。未来需进一步整合多能源系统与智能算法,构建适应高比例可再生能源的弹性能源网络。
📚2 运行结果、
原文图:
复现结果图:
原文图:
复现结果图:
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]刘丁赫,马聪,王勇.风电最大化消纳的热电联产机组联合优化控制[J].分布式能源,2021,6(01):21-26.DOI:10.16513/j.2096-2185.DE.2106006.