大模型API云端部署

我们考虑到autodl只能映射到本地端口的话,对于其他同学的测试与调用工作非常不友好,因此我们通过策略将autodl端的模型部署到云端服务器上,以此来实现对公网IP的访问进而实现对API的调用。

具体方式:

1.结合autodl自定义服务对于Linux的提示

2.本地通过SSH连接至服务器

利用cmd就可以实现,使用代码SSH root@(紧跟云端服务器IP地址)

3.服务器中使用对应代码

利用第一条提供的两个代码,即可开启对应云端服务器的端口提供公网IP访问服务端口的功能

### 如何在云平台部署 DeepSeek 生成 API #### 部署前准备 为了顺利地在云端部署 DeepSeek 并生成 API,需先完成一系列准备工作。这包括但不限于创建阿里云账号并开通 PAI Model Gallery 服务[^1]。 #### 创建环境 进入阿里云控制台,在左侧导航栏找到并点击“机器学习平台PAI”,随后选择“ModelScope”。在这里可以发现已集成的 DeepSeek-V3 和 DeepSeek-R1 模型。对于初次使用者来说,这些预训练模型提供了便捷的一键部署选项,使得整个过程更加简单快捷。 #### 配置参数与资源分配 当决定要使用哪个版本的 DeepSeek 后,下一步就是配置运行所需的计算资源。考虑到 DeepSeek 是基于大模型构建而成的应用程序,因此建议选用配备有高性能 GPU 的实例来加速推理速度以及提高处理效率。此外还需指定存储空间大小以及其他必要的网络设置等信息[^2]。 #### 实现自动化API接口 一旦完成了上述步骤之后,则可以通过调用 RESTful APIs 或者 SDKs 来轻松获取预测结果而无需额外编程工作。具体而言,可以在 Web 控制台上直接定义输入输出格式,并自动生成相应的 API 文档供开发者参考和测试之用。这种做法不仅提高了工作效率还减少了人为错误发生的可能性。 ```json { "input": { "text": "your input text here" }, "output": { "result": "generated result from deepseek model" } } ``` #### 安全性和性能优化措施 针对安全性方面的要求,应当启用 HTTPS 协议加密传输通道防止敏感数据泄露风险;同时利用负载均衡器分发请求流量从而保障系统的高可用性。另外还可以考虑采用缓存机制减少重复查询次数进而提升响应时间表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值