YOLOV8的目标检测系统

一、项目背景

        本项目旨在创建一个综合性的视频处理工具,融合了目标检测、姿态估计和视频分割等多种计算机视觉技术。通过提供直观的用户界面,使用户能够轻松地对视频进行处理和分析,满足在监控、视频内容创作、科研等领域对视频深入理解和处理的需求。      

二、项目目的 

        目的在于创建一个基于 PyQt5 的图形用户界面(GUI)应用程序,能够方便地打开视频文件,并提供了三种主要的处理功能:追踪、姿态估计和分割。用户可以通过界面上的按钮选择所需的操作,并从预定义的模型选项中选择合适的模型进行处理。整个应用旨在为用户提供一个直观、易用的视频处理工具,使其能够在一个界面中完成多种与计算机视觉相关的任务,而无需复杂的命令行操作或专业知识。同时,通过实时显示处理后的视频帧,让用户能够直观地看到处理效果。   

三、代码概述

        这段代码主要使用了 Python 的多个库和模块,包括 ossyscv2 用于处理文件和图像操作,PyQt5 用于构建图形用户界面(GUI),以及 ultralytics 中的 YOLO 模型进行目标检测等任务。

四、关键代码解析

        1.模型选项的定义:

                这部分定义了不同任务所对应的模型路径,为后续根据用户选择加载模型提供了基础。

# 定义模型选择的选项
model_options = {
    "检测模型": "yolov8n.pt",
    "姿态估计模型": "yolov8n-pose.pt",
    "分割模型": "yolov8n-seg.pt"

        2.MainWindow 类的构造函数:

                这里完成了主窗口的初始化工作,包括窗口属性设置、布局安排、按钮创建以及与各种操作对应的事件关联

class MainWindow(QMainWindow):
    def __init__(self):

        3.打开视频的相关办法:

 def open_video(self):
        """
        打开视频文件的方法
        - 弹出文件选择对话框,获取用户选择的视频文件路径
        - 如果未选择文件,弹出错误提示框并返回
        - 尝试使用 OpenCV 打开选择的视频文件
        - 如果打开成功,启用相关操作按钮,并调用显示视频的方法
        - 如果打开失败,弹出错误提示框
        """
        video_path, _ = QFileDialog.getOpenFileName(self, "选择视频文件", "", "Video Files (*.mp4 *.avi)")
        if not video_path:  
            QMessageBox.warning(self, "错误", "未选择视频文件")
            return
        try:
            self.cap = cv2.VideoCapture(video_path)
            self.start_tracking_button.setEnabled(True)
            self.start_estimation_button.setEnabled(True)
            self.start_segmentation_button.setEnabled(True)
            self.show_video()
        except:  
            QMessageBox.warning(self, "错误", "视频文件错误")

        4.各种任务的开始和执行方法:

def start_tracking(self):
        """
        开始追踪的方法
        - 如果视频捕获对象存在
        - 设置追踪标志为 `True`,禁用开始追踪按钮,启用结束追踪按钮
        - 根据选择的模型选项获取模型路径并加载模型
        - 调用追踪视频的方法
        """
        if self.cap is not None:
            self.is_tracking = True  
            self.start_tracking_button.setEnabled(False)
            self.stop_tracking_button.setEnabled(True)

            selected_option = self.model_combobox.currentText()  
            model_path = model_options[selected_option]  

            # 加载模型
            self.model = YOLO(model_path, task='track')

            self.track_video(self.cap)
        开始姿态估计的方法:

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你的名字·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值