探索大模型应用:构建基于检索的RAG实战指南

在AI技术的浪潮中,大模型以其强大的问题回答能力,正逐渐渗透到各行各业,成为推动行业发展的新引擎。然而,大模型并非万能,它在实时性和私有领域知识覆盖上存在局限。为了克服这些限制,本文将带你深入了解如何利用检索增强生成模型(RAG)来扩展大模型的能力,并通过一个实战案例,展示如何构建一个基于RAG的AI知识库。

一、大模型的局限与RAG的机遇

大模型虽然在处理通用问题上表现出色,但在面对实时数据和私有领域知识时,却显得力不从心。为了解决这一问题,RAG技术应运而生。RAG通过构建知识库,动态补充大模型的知识储备,使其能够回答更多问题,从而增强其应用范围和深度。

二、RAG构建流程详解

构建一个基于RAG的AI知识库,可以分为以下五个步骤:

1.文档加载与文本提取

我们将借助pdfminer库中的三个强大工具来处理PDF文档,以便于我们能够更高效地提取和处理所需信息。

(1)pdfminer.six:这是一个多功能库,专门设计来处理PDF文档。它的核心功能包括从PDF文件中提取文本和布局信息,让我们能够以编程的方式自动化处理PDF文档,极大地提高了工作效率。

(2)pdfminer.high_level:作为PDFMiner的高级接口,此工具为我们提供了一套简化的方法来处理PDF文档。它特别适合于执行高级文档处理任务,如文本提取和页面信息获取,使得我们能够快速访问和操作PDF中的文本内容。

(3)pdfminer.layout:这是PDFMiner库的一个组成部分,专注于解析和处理PDF文档的布局信息。它能够识别文本在页面上的确切位置、字体样式等细节,对于需要根据页面布局进行特定处理的场景来说,是一个非常有用的工具。

通过这三个工具的协同工作,我们能够将PDF文档中的数据转换成可供程序进一步分析和利用的格式,为后续的知识库构建和信息检索打下坚实的基础。

在控制台输入:



`#调用包管理工具即可下载:   pip install pdfminer.six`


把对应的工具导入代码文件中,接下来就可以写主体的代码了:



`from pdfminer.high_level import extract_pages   from pdfminer.layout import LTTextContainer      def``extract_text_from_pdf``(filename, page_numbers=None, min_line_length=1):`    `'''从 PDF 文件中(按指定页码)提取文字'''`    `paragraphs = []       buffer =` `''`    `full_text = ''       # 提取全部文本       for i, page_layout in enumerate(extract_pages(filename)):           # 如果指定了页码范围,跳过范围外的页           if page_numbers is not None and i not in page_numbers:               continue           for element in page_layout:               if isinstance(element, LTTextContainer):                   full_text += element.get_text() +` `'\n'`    `# 按空行分隔,将文本重新组织成段落   lines = full_text.split(``'\n'``)`


使用pdfminer库中的extract_pages函数从指定的PDF文件中提取页面布局信息。

遍历每个页面的布局信息,仅保留文本容器LTTextContainer类型的元素,并将其文本内容拼接成一个完整的文本字符串full_text。



`for text in lines:           if len(text) >= min_line_length:               buffer += (``' '``+text) if not text.endswith(``'-'``) else text.strip(``'-'``)           elif buffer:               paragraphs.append(buffer)               buffer =` `''`    `if buffer:           paragraphs.append(buffer)       return paragraphs      paragraphs = extract_text_from_pdf(``"llama2.pdf"``, min_line_length=10)      for para in paragraphs[:3]:   print(para+``"\n"``)`


在处理PDF文档转换为可编辑文本的过程中,我们采取了一系列精细化的步骤来优化文本的质量和结构。以下是我们实施的文本处理流程:

(1)文本分段

我们首先将连续的文本字符串依据空行作为分隔符,划分成独立的段落。这一步骤确保了文本的可读性,使其更贴近自然阅读的习惯。

(2)过滤短行

通过设定一个min_line_length参数,我们对文本进行过滤,忽略掉那些长度不足的行。这一策略有助于去除文档中的噪声,比如页脚或页眉中的简短文字。

(3)连字符处理

对于以连字符结尾的行,我们采取了特殊的合并策略。如果一个断行以连字符结束,我们会将其与下一行相连,以保持文本内容的完整性。

(4)文本重组

在完成上述步骤后,我们得到了一个经过重组的文本段落列表。这个列表中的每个元素都是一个经过清洗和重组的段落,它们构成了我们知识库的基础。

在整个流程中,我们利用了pdfminer库的extract_pages函数来提取PDF文件的页面布局信息。我们遍历了每个页面中的文本容器,并将这些容器中的文本内容串联起来,形成了一个完整的文本字符串。随后,我们对这些文本进行了细致的组织和切割,最终生成了一个整洁、结构化的文本段落列表,为后续的信息检索和知识库构建提供了高质量的数据源。

2. 接口引擎搭建

在构建高效知识检索系统的过程中,我们引入了两个强大的工具:elasticsearch7和NLTK (Natural Language Toolkit)。下面,让我们深入了解它们各自的功能和应用。

(1)elasticsearch7

这是Elasticsearch的官方Python客户端库,它充当着与Elasticsearch服务器交互的桥梁。在Python应用中,我们通过它与Elasticsearch集群进行通信,执行包括搜索、索引创建和更新在内的各种操作。Elasticsearch作为一个分布式搜索引擎,以其在全文搜索和日志分析等领域的广泛应用而闻名。

(2)NLTK (Natural Language Toolkit)

这是自然语言处理(NLP)领域的一个综合性库,它提供了一系列工具和资源,专门用于处理和分析人类语言数据。NLTK在文本处理、分词、词性标注、语法分析等NLP任务中发挥着重要作用。此外,它还包含了大量的语料库和算法,极大地简化了使用Python进行NLP开发的复杂性。

装备了这两个工具,我们能够更加方便地从知识库中检索内容,并精准地提取出所需的信息。为了将这些工具集成到我们的工作流程中,我们通过包管理工具进行了安装和加载。

通过这样的技术栈配置,我们不仅能够构建一个强大的知识检索系统,还能够在自然语言处理方面进行深入的分析和应用,从而为我们的AI知识库提供坚实的技术支撑。



`pip install elasticsearch   pip install nltk`


接下来的代码主要涉及与Elasticsearch的交互,包括建立索引、将文本数据灌入索引以及执行搜索操作。以下是具体的步骤:



 `#文本处理与关键词提取   from elasticsearch7 import Elasticsearch, helpers   from nltk.stem import PorterStemmer   from nltk.tokenize import word_tokenize   from nltk.corpus import stopwords   import nltk   import re   nltk.download(``'stopwords'``)   import warnings   warnings.simplefilter(``"ignore"``)  # 屏蔽 ES 的一些Warnings   nltk.download(``'punkt'``)  # 英文切词、词根、切句等方法   nltk.download(``'stopwords'``)  # 英文停用词库   def` `to_keywords``(input_string):`    `'''(英文)文本只保留关键字'''`    `# 使用正则表达式替换所有非字母数字的字符为空格       no_symbols = re.sub(r``'[^a-zA-Z0-9\s]'``,` `' '``, input_string)       word_tokens = word_tokenize(no_symbols)       # 加载停用词表       stop_words = set(stopwords.words(``'english'``))       ps = PorterStemmer()       # 去停用词,取词根       filtered_sentence = [ps.stem(w)       for w in word_tokens if not w.lower() in stop_words]            return` `' '``.join(filtered_sentence)`


在文本处理的过程中,我们巧妙地利用了NLTK库的强大功能。我们的工作流程包括几个关键步骤:首先,通过PorterStemmer进行词干提取,这一过程剥离了单词的前缀和后缀,将它们还原到最基本的形式;接着,我们采用word_tokenize进行分词处理,将连续的文本分解成单独的词汇单元;最后,通过stopwords去除常见的停用词,这些词汇在语言中普遍出现,但对于精确搜索和分析往往贡献有限。

此外,我们还利用了Python标准库中的re模块来处理正则表达式,这使得我们能够从文本中精准地提取出关键词,为后续的语义分析和信息检索打下坚实基础。



`# 创建索引   es.indices.create(index=index_name)      # 灌库指令   actions = [       {`        `"_index"``: index_name,`        `"_source"``: {`            `"keywords"``: to_keywords(para),`            `"text"``: para           }       }       for para in paragraphs   ]      #文本灌库   helpers.bulk(es, actions)`


在上面的代码中,我们使用列表推导式构建actions列表,其中每个元素是一个字典,包含了索引名称、关键词和原始文本。每个段落的关键词是通过前面定义的to_keywords函数处理得到的。最后使用helpers.bulk函数将文本数据批量灌入Elasticsearch索引。

接下来我们需要定义一个search函数,用于执行基于关键词的搜索操作。使用search函数执行搜索,指定查询字符串和返回结果的数量。将搜索结果中的文本内容提取出来,并打印输出。接下来我们看一下如何实现定义搜索函数:



`def` `search``(query_string, top_n=3):       # ES 的查询语言       search_query = {`        `"match"``: {`            `"keywords"``: to_keywords(query_string)           }       }       res = es.search(index=index_name, query=search_query, size=top_n)       return [hit[``"_source"``][``"text"``] for hit in res[``"hits"``][``"hits"``]]      results = search(``"how many parameters does llama 2 have?"``, 2)   for r in results:   print(r+``"\n"``)`


完成接口引擎开发之后,接下来我们就要对接口封装。

3. 接口封装与OpenAI GPT-3.5-turbo模型交互

这一部分涉及到与OpenAI GPT-3.5-turbo模型的交互,以及封装与OpenAI的通信过程:



`from openai import OpenAI   import os   # 加载环境变量   from dotenv import load_dotenv, find_dotenv   _ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY      client = OpenAI()      def` `get_completion``(prompt, model=``"gpt-3.5-turbo"``):`    `'''封装 openai 接口'''`    `messages = [{``"role"``:` `"user"``,` `"content"``: prompt}]       response = client.chat.completions.create(           model=model,           messages=messages,           temperature=0,  # 模型输出的随机性,0 表示随机性最小       )   return response.choices[0].message.content`


以上代码,使用python-dotenv库加载环境变量,其中包含了OpenAI API的密钥。使用openai库中的OpenAI类创建一个OpenAI API的客户端。定义get_completion函数,该函数接收一个提示(prompt)并调用OpenAI API的聊天补全接口,获取模型生成的回复。最后使用get_completion函数调用OpenAI GPT-3.5-turbo模型,传入之前构建的中文提示(这里要自己构建一个Prompt模板)。设置temperature参数可以自己设置,建议设为0,以最小化模型生成输出的随机性。

接下来是大模型的必知必会应用Prompt,Prompt用好你会发现让你在开发上和工作期间让你提效翻倍,在RAG应用过程中Prompt应用也是必不可少的,接下来我们看看Prompt模版应用。

4. Prompt模板构建

构建一个符合中文对话语境的Prompt模板,用于生成问题并提供已知信息。



`def` `build_prompt``(prompt_template, **kwargs):`    `'''将 Prompt 模板赋值'''`    `prompt = prompt_template       for k, v in kwargs.items():           if isinstance(v, str):               val = v           elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):               val =` `'\n'``.join(v)           else:               val = str(v)           prompt = prompt.replace(f``"__{k.upper()}__"``, val)       return prompt      prompt_template =` `"""`


具体来说, 定义一个名为 build_prompt 的函数,该函数接收一个 Prompt 模板和一组关键字参数。使用关键字参数填充模板中的占位符,占位符以 __ 开头,后跟大写字母标识符。这些占位符包括 __INFO__ 和 __QUERY__。他们的名称无所谓,主要是方便我们之后填充内容即可。

5. RAG正式运行

在下面的代码中,我们定义了一个用户查询的字符串, 使用之前定义的搜索函数 search 对用户查询进行基于关键词的搜索,返回搜索结果。使用build_prompt 函数,将搜索结果和用户查询组装成一个用于 OpenAI 模型的输入 Prompt。



`user_query =` `"how many parameters does llama 2 have?"``      # 1. 检索   search_results = search(user_query, 2)      # 2. 构建 Prompt   prompt = build_prompt(prompt_template, info=search_results, query=user_query)   print(``"===Prompt==="``)   print(prompt)      # 3. 调用 LLM   response = get_completion(prompt)      print(``"===回复==="``)   print(response)`


到这里,我们就完成了整个流程的开发,接下来我们就对每个环节进行一个简短的提炼总结,一起来梳理一下整个实现过程。

三、实战案例分析

本文中,我们将通过一个实战案例,展示如何应用上述步骤构建一个基于RAG的AI知识库。从文档的加载与切割,到接口引擎的搭建,再到Prompt模板的构建和RAG的正式运行,每一步都精心设计,以确保最终的AI知识库能够精准地回应用户的查询。

四、总结与展望

通过以上五个步骤,我们成功构建了一个简单的AI知识库。在实践中,我们可以结合自己的业务需求,构建不同领域的AI知识库,使自己的AI更加强大。这不仅能够实现技术提升,还能拓展新的技术领域,与实际业务相结合,进行不断的迭代和升级。

五、结语

大模型的时代已经到来,而RAG技术的应用,为我们打开了一扇通往更深层次AI应用的大门。希望通过本文的分享,能够激发你对大模型和RAG技术的兴趣,并在你的技术道路上提供帮助和启发。欢迎在评论区交流讨论,共同探索AI技术的无限可能。

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值