基于大模型的知识助手:7家头部企业“大模型+知识管理”落地实践

知识,作为企业最宝贵的资产之一,其有效管理和应用成为企业提升竞争力的关键。然而,传统的知识管理系统往往存在信息孤岛、检索效率低下、知识更新滞后等问题,难以满足企业快速响应市场变化的需求。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

基于大模型的知识助手应运而生,它以其强大的语义理解和数据处理能力,正在成为企业知识管理的最佳解决路径,有效打通了企业知识应用的“最后一公里”,为企业知识管理带来了革命性的变革。

基于大模型的知识助手不仅能够自动整合企业内外部的海量信息,构建全面、精准的知识图谱,还能够通过自然语言查询,实现一键触达精准答案。这种高效检索机制极大缩短了信息获取时间,提高了工作效率和决策质量。

根据沙丘智库发布的《2024年生成式AI案例研究简报(7月)》,知识助手是当前大模型落地最多的应用,大部分企业在探索大模型时都会优先选择这类场景进行试点。

沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新、最全面的落地情况。沙丘智库通过研究金融、汽车制造、电信、能源、互联网等行业7家头部企业(招商银行、泰康保险、长安汽车、江西移动、国家电网、哈啰出行、阿里云)的“大模型+知识管理”实践,旨在为其他企业提供参考。

案例1:招商银行智本GPT推动资本新规在全行的应用

新版《商业银行资本管理办法》的实施导致资本计量和管理体系全面重构,规则变化超过一半,复杂度大幅提升。这给招商银行在资本配置、回报管理等方面带来重大影响,并对其掌握及应用新规、推动业务转型构成了巨大挑战。

招商银行将大语言模型与资本管理系统深度融合,打造“智本GPT”,智本GPT能够以自然语言、图片、表格等多种形式,自主回答关于资本新规的问题,并开展数据查询及分析、辅助数据治理等。新规相关监管、经济资本政策问答的人工替代率达到50%以上。

案例选自:2024年生成式AI案例研究简报(7月) (276 个案例/324页PPT)

案例2:泰康保险集团大模型应用实践

泰康保险利用大模型开发了绩效知识助手,绩效知识助手是一款专用化搜问一体工具,以多轮对话驱动用户意图的精准获取,提升用户体验,融合问答库、文档库、外部搜索和大模型问答四类知识来源,实现内外部知识的双重获取,同时提供原始知识溯源,并主动推荐关联问题,让知识范围更广泛,知识信息更精准,交互体验更友好。

完整内容:泰康保险集团大模型应用实践

案例3:长安汽车知识大模型应用实践

长安汽车选取企业内部流程知识管理领域,以人力资源场景作为试点进行探索,以一站式知识管理平台人力资源领域知识内容为基础数据,结合检索增强等技术,提高检索文档准确性,降低知识获取难度。试点结果显示,搜索准确率提升至85%,大幅减少了知识获取时间,提高了企业内部协同效率。

完整内容:长安汽车知识大模型应用实践

案例4:江西移动大小模型协同的企业级私域知识检索平台

江西移动通过”大模型挂载小模型,小模型驱动大模型“的方式,构建企业级RAG开放能力平台——江小智。平台通过大小模型协同,打造通用知识管理能力,具有很好的应用泛化性和较高的知识互动精准性。平台为江西移动办公知识检索、一线营销培训等业务场景带来显著的价值提升。

完整内容:江西移动大小模型协同的企业级私域知识检索平台

案例5:国家电网基于电力认知大模型的设备运检知识助手

基于国网智能电网研究院海量高质量电力样本和电力运检场景的人工智能研发经验,以及百度文心系列大模型及领先的深度学习、知识图谱增强等技术,共同开发基于电力认知大模型的设备运检知识助手,赋能知识服务和计算引擎,实现设备运检环节的知识便捷查询、快速学习和作业辅助。

案例选自:国家电网基于电力认知大模型的设备运检知识助手

案例6:哈啰出行两轮车业务知识库问答助手

面对上万名线下的两轮车运维人员,哈啰出行打造两轮车业务知识库,将运维人员的运营经验、业务SOP、系统链路、公网知识等企业非标资产沉淀下来,通过大模型Copilot模式进行日常推送,有效提高现有运维人员的能力以及提高新人培训效率。

完整内容:哈啰出行两轮车业务知识库问答助手

案例7:阿里云基于RAG的智能问答实践

阿里云通过RAG技术,解决了智能问答中遇到的幻觉问题、知识更新缓慢、隐私数据泄露和高昂的训练成本等挑战。RAG方案通过外挂知识库提供可靠知识,优化了知识检索和答案生成流程,提高了智能问答的准确性和效率。

完整内容:阿里云基于RAG的智能问答实践

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户问的是企业如何部署大模型。首先,我需要明确大模型部署的关键步骤和注意事项。企业部署大模型通常会面临技术选型、资源分配、数据安全等问题,所以需要分阶段来考虑。 首先,得确定业务需求。企业需要明确大模型应用场景,比如客服、数据分析还是内容生成。不同的场景对模型的要求不同,比如实时性、准确度等。然后得评估现有的技术基础设施,比如计算资源是否足够,是否有GPU集群,存储和网络带宽是否满足需求。这一步可能需要和业务部门沟通,确保技术方案能支持业务目标。 接下来是模型选择。企业可以选择使用开源模型,比如LLaMA、BERT,或者商用API,比如OpenAI、Azure AI。开源模型的好处是可控性强,可以自定义,但需要更多的技术投入;商用API则省事,但可能涉及数据隐私问题。这时候需要权衡利弊,尤其是数据安全和合规性方面,比如GDPR或者国内的数据安全法。 然后是数据准备。大模型需要高质量的数据进行训练或微调。企业需要收集和清洗数据,确保数据质量,同时处理敏感信息,比如匿名化或脱敏。数据预处理包括标注、分词、特征工程等,这一步很关键,直接影响模型效果。 接下来是模型训练与微调。如果使用预训练模型,可能需要在企业特定数据上进行微调。这里需要配置分布式训练环境,可能需要用到多个GPU或者TPU,同时监控训练过程,防止过拟合。训练完成后,还要评估模型性能,使用测试集验证准确率、召回率等指标。 部署阶段需要考虑模型服务化。通常会用REST API或者gRPC将模型封装成服务,方便其他系统调用。这时候要考虑高并发和低延迟,可能需要负载均衡和自动扩缩容。另外,模型版本管理和回滚机制也很重要,确保更新时不影响现有服务。 监控与维护也是不可少的。上线后要实时监控性能指标,比如响应时间、错误率,同时关注资源使用情况,及时优化。还要定期更新模型,适应数据分布的变化,处理用户反馈的问题,持续改进模型。 安全和合规方面,必须确保数据传输和存储加密,访问控制严格,权限管理到位。合规性审核也要定期进行,避免法律风险。此外,成本管理也很重要,因为大模型的训练和推理成本高,需要优化资源使用,选择合适的云服务或本地部署,平衡性能和开销。 最后,员工培训和文化适应。技术团队需要掌握大模型开发和运维技能,业务部门要理解模型的能力和限制,促进跨部门协作,建立反馈机制,持续优化应用效果。 总结一下,企业部署大模型是一个系统工程,涉及需求分析、技术选型、数据处理、模型优化、部署运维、安全合规和团队协作等多个环节,需要全面规划和持续迭代。可能还需要考虑是否采用混合云架构,或者如何与现有系统集成,这些都需要详细评估和分步实施。</think>企业部署大模型需要系统规划与分步实施,以下是关键步骤和注意事项: --- ### **一、明确需求与评估基础** 1. **业务场景分析** - 确定大模型用途(如智能客服、文档生成、数据分析等)。 - 明确性能需求:实时性、准确性、并发量等。 2. **基础设施评估** - 计算资源:需GPU/TPU集群支持训练与推理(如NVIDIA A100、H100)。 - 存储与网络:确保高速存储(如分布式文件系统)和低延迟网络。 - 云或本地部署:选择公有云(AWS/GCP/Azure)、私有云或混合架构。 --- ### **二、模型选择与优化** 1. **模型选型** - 开源模型:如LLaMA、Falcon、ChatGLM(可定制化,需技术投入)。 - 商用API:如OpenAI、Claude(快速接入,但依赖第三方)。 - 自研模型:需大规模数据与算力,适合头部企业。 2. **模型优化** - **轻量化**:通过剪枝、量化降低计算开销(如将FP32转为INT8)。 - **领域微调**:使用企业私有数据微调预训练模型(如LoRA技术)。 - **提示工程**:设计高质量Prompt提升任务适配性。 --- ### **三、数据准备与治理** 1. **数据收集与清洗** - 构建领域相关语料库,去除噪声与重复数据。 - 敏感信息脱敏(如用正则表达式过滤身份证、电话号码)。 2. **数据标注与增强** - 人工标注关键样本(如意图分类、实体识别)。 - 合成数据生成:用规则或小模型扩充训练集。 --- ### **四、部署与工程化** 1. **推理服务化** - 框架选择:使用FastAPI、TorchServe或Triton Inference Server封装模型。 - API设计:定义标准化输入输出(如JSON格式),支持异步调用。 2. **性能优化** - **批处理**:合并请求提升GPU利用率。 - **缓存机制**:缓存高频查询结果(如Redis)。 - **硬件加速**:利用CUDA、TensorRT优化推理速度。 3. **高可用架构** - 负载均衡:通过Kubernetes自动扩缩容Pod。 - 容灾备份:跨可用区部署,设置健康检查与故障转移。 --- ### **五、安全与合规** 1. **数据安全** - 传输加密:使用HTTPS、mTLS。 - 存储隔离:敏感数据独立存储,访问权限控制(如RBAC)。 2. **内容合规** - 输出过滤:通过正则规则或小模型拦截有害内容。 - 审计日志:记录所有请求与响应,留存可追溯。 3. **合规认证** - 通过等保三级、GDPR等认证,确保法律合规性。 --- ### **六、监控与迭代** 1. **指标监控** - 技术指标:GPU利用率、延迟、错误率(如Prometheus+Grafana)。 - 业务指标:任务成功率、用户满意度(如埋点分析)。 2. **持续迭代** - A/B测试:对比新旧模型效果。 - 在线学习:逐步增量更新模型(需谨慎避免漂移)。 --- ### **七、成本控制** 1. **资源优化** - 按需调度:训练任务使用Spot实例,推理服务自动缩容。 - 混合精度训练:减少显存占用(如FP16+FP32)。 2. **成本分析** - 测算单次推理成本(如token/元),优化高开销模块。 --- ### **典型部署架构示例** ```plaintext +-------------------+ | 前端/移动端 | +---------+---------+ | | HTTP/GRPC v +------------------+ +--------+--------+ +------------------+ | 负载均衡 | <---> | 模型推理服务 | <---> | 分布式存储 | | (Nginx/K8s-Ingress)| | (GPU集群+容器化)| | (MinIO/HDFS) | +------------------+ +--------+--------+ +------------------+ | | 监控日志 v +---------+---------+ | Prometheus+ELK | +-------------------+ ``` --- ### **挑战与对策** 1. **算力成本高** - 对策:采用模型压缩、使用国产化算力(如昇腾)。 2. **幻觉问题** - 对策:RAG(检索增强生成)+ 知识库校验。 3. **长尾场景覆盖** - 对策:主动学习(Active Learning)补充标注数据。 --- 通过以上步骤,企业可系统化落地大模型,平衡性能、成本与安全性,实现业务价值转化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值