企业如何训练自己的专属大模型?

时至今日,AI语言大模型已经成为未来发展的关键。国内外科技企业纷纷开始自主研发专属大模型。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

大语言模型是什么?它是一种自主学习的算法,具有总结、翻译、生成文本等各个功能,可以在摆脱人为控制的情况下,自主创作文案内容。相较于传统的算法模型,大语言模型更倾向于利用学习掌握一个系统化的知识,并将其应用在各个工作任务中,最大程度的发挥其效益。

如何将大语言模型应用到各行各业中?答案便是构建领域大模型。领域大模型是指大语言模型在企业的应用中,可以辅助进行领域数据标注和模型微调。目前市场上普遍存在的运行模式是由大企业出基础的大模型框架,各个垂直领域的公司可以自由选择符合自身需求的模型并进行调整。我们可以在此基础上总结出企业训练专属大模型的步骤。

一、选择适合的基础大模型

企业要根据自身的经营业务建立系统化的指标体系,比如准确率、可解释性、稳定性、成本性等等,将指标进行量化统计后,分析比对各个模型的特点。

以BenTsao (本草)项目为例,该项目创立之初,开发者需要制作权威的医学知识图谱,并且搜集相关医学文献。并利用ChatGPT API构建微调数据集。进行指令微调,达到医学知识问答效果。当然,企业进行模型选择的时候,还要考虑到模型本身的基础能力和编程能力等实力,需要模型自身的基础能力够强,而非是精准调制过后的。因为企业进行开发的时候,往往也是基于模型基础能力上进行开发。目前比较好的模型推荐有Code LLaMA(34B)、Starcoder(15B)。

二、对数据进行清洗和标注

这是关系到最终运行的关键环节,数据的清洗将影响到模型呈现的效果。数据清洗按照先后顺序来,主要有以下步骤:

  1. 基础清洗:去除重复记录的信息,纠正低级错误,并保障数据格式统一,方便查看;
  2. 结构化清洗:在格式统一的基础上,进行数据的转化与创建,可以选择并改善模型性能;
  3. 内容清洗:可以对数据进行语义识别、合并、异常值处理。
  4. 高级清洗:可以通过技术的手段进行数据合成,并处理除文本信息外的图像、饮品等复杂数据信息,同时保证用户隐私。该程序仅限于特定应用。
  5. 审核验证:聘请业内专家进行审查,验证数据清洗的质量是否达标,期间涉及到很多种检查标准和控制流程。

数据标注是在模型设计前期,直接决定数据收集方向和训练方向的关键。数据标注可以被分成9个步骤:确定任务和标注需求——收集原始数据信息——对数据进行清洗和预处理——设计相应的方案——进行数据标注——控制好质量和准确性——对数据进行扩充、增强——建立相应的训练方案,对结果进行验证和测试——保持持续监督、更新的工作方式。

其中,我们进行原始的数据收集时,可以收集学术研究机构或者企业提供的公开信息,以便于模型训练评估的实地应用。过程中要注重数据的合法合规,在一些情况下也可以进行实体标注、情感标注和语法标注。

三、训练和微调

训练是大模型进行深度学习,以培养出可以理解并生成自然语言文本模型的过程。期间,企业需要处理搜集大规模的文本数据,并学习其内在的规律、语义,以及行文上下的内在关系等。目前国内市场主要的训练路线是Google主导的TPU + XLA + TensorFlow 和NVIDIA、Meta、微软等大厂控制的 GPU + PyTorch + Megatron-LM + DeepSpeed。

微调则是控制模型根据特定任务的标注数据进行训练,这一阶段的主要目的是在模型矿价不变的情况下,进行修改输出层,并调整合适的参数,以便于模型能够适应特定的任务。

最后的评估与迭代、部署和监控,便聚焦模型研发后的售后升级与实时监控。这两个环节中,开发者需要按照领域内的标准对模型的性能进行评估,可以聘请专业人士给出评估建议,开发者再根据评估进行改进与迭代更新。

模型正常运行之后,开发者还要对模型的日常运行进行监控和部署。

整个训练过程中,API发挥着巨大的效用。它可以帮助开发者高效率、低成本地处理数据。

还可以在动态更新模型数据的同时,保障私有数据安全地接入大模型。以下推荐几款好用的API:

  • HBase:【HBase】服务是一款依托于Apache HBase这一开源分布式列式数据库系统为核心技术打造的高性能、高可扩展的大数据存储与检索解决方案,旨在为大数据分析、实时数据处理、物联网(IoT)、日志管理和金融风控等多种业务场景下的企业级应用提供高效、可靠的数据管理能力。

  • 日志服务:日志服务(Cloud Log Service,CLS)是腾讯云提供的一站式日志服务平台,提供了从日志采集、日志存储到日志检索,图表分析、监控告警、日志投递等多项服务,协助用户通过日志来解决业务运维、服务监控的歌多个功能。且腾讯云 CLS 采用高可用的分布式架构设计,对日志数据进行了多冗余备份存储,防止单节点服务宕机数据不可用,提供达99.9%的服务可用性,为日志数据提供稳定可靠的服务保障。

  • 云监控:云监控(Cloud Monitor)支持针对云产品资源和自定义上报资源设置指标阈值告警。为您提供立体化云产品数据监控、智能化数据分析、实时化异常告警和可视化数据展示。有着秒级采集覆盖所有指标数据,感受最细粒度的指标变化,提供精细的云产品监控体验。云监控对秒级监控数据提供24小时免费存储,支持在线查看和数据下载等功能。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要帮助用户了解如何在阿里云百炼平台上训练定制化模型。首先,我应该回顾用户提供的引用内容,看看里面有没有相关的信息。 根据引用[1],阿里云百炼已经在多个行业展示出赋能能力,并且提到帮助用户构建专属模型和应用优化。引用[2]详细介绍了百炼的功能,包括支持第三方模型接入、提供模型定制能力,以及通过API和可视化工具简化流程。还提到模型中心、数据中心、权限管理等模块。 接下来,我需要整理出训练定制化模型的具体步骤。首先,可能需要注册并登录平台,然后进入模型定制模块。根据引用中的信息,百炼提供了Prompt优化、知识库管理、函数调用等功能,这些可能和模型训练相关。另外,数据准备是关键,可能需要使用平台的数据中心工具来处理数据,比如清洗、标注等。然后选择基础模型,可能支持预训练模型或者第三方模型。之后进行参数调整,比如学习率、训练轮次等,可能通过可视化界面配置。训练完成后进行验证,并部署到模型中心。另外,引用中还提到支持行业定制化模型,可能需要选择适合的行业模板。 还要考虑用户可能的后续问题,比如数据安全如何保障,训练需要多长时间,或者是否需要编程基础。因此,在回答中需要涵盖这些点,或者在相关问题里提出。 现在需要确保回答结构清晰,分步骤说明,并且引用对应的引用标记。同时,按照用户要求,使用中文,正确应用LaTeX格式,比如变量用$...$,独立公式用$$...$$,但在这个问题中可能涉及数学公式较少,不过如果有的话需要注意。例如,如果提到模型训练中的损失函数,可能需要用$$L = \frac{1}{N}\sum_{i=1}^N (y_i - \hat{y}_i)^2$$这样的格式。 最后生成相关问题,可能包括数据安全、训练时间、是否需要编程、行业模型选择等。确保每个引用来源正确标注,比如在提到数据保护时引用[2],提到行业应用时引用[1]等。 总结步骤: 1. 准备工作:注册账号,进入控制台。 2. 数据准备:使用数据中心工具处理数据,确保质量和标注。 3. 模型选择:选择预训练模型或第三方模型作为基础。 4. 参数配置:通过可视化界面调整超参数。 5. 训练与调优:启动训练,监控指标,使用Prompt优化工具。 6. 验证部署:测试模型性能,部署到生产环境。 7. 权限管理:设置团队协作和权限。 需要检查是否符合用户的所有要求,包括结构、引用、LaTeX格式等。现在将这些整理成回答。</think>### 如何在阿里云百炼大模型平台训练定制化模型? 阿里云百炼提供了一套完整的工具链和基础设施,支持用户高效训练定制化模型。以下是具体步骤: --- #### **1. 准备工作** - **注册并登录平台**:进入阿里云百炼控制台,完成账号注册与权限配置[^2]。 - **选择模型类型**:根据需求选择文本、图像或多模态模型类型,平台支持通义千问商业版API及第三方模型(如DeepSeek-V3)的接入[^2]。 --- #### **2. 数据准备** - **上传数据集**:通过**数据中心**模块上传标注数据,支持结构化数据(如CSV、JSON)和非结构化数据(如文本、图片)。 - **数据预处理**:使用内置工具进行数据清洗、去噪和增强,例如通过正则表达式过滤无效文本,或调用图像裁剪函数$f(x,y) = \text{crop}(I, x, y)$。 - **构建知识库**:将行业知识或私有数据导入知识库,用于后续模型训练中的检索增强(Retrieval-Augmented Generation, RAG)[^1]。 --- #### **3. 模型选择与配置** - **选择基础模型**:从**模型中心**选择预训练模型(如通义千问)作为基础,或导入第三方模型[^2]。 - **配置训练参数**: - 通过可视化界面设置超参数(如学习率$\eta=0.001$、训练轮次$T=100$)。 - 定义损失函数,例如交叉熵损失: $$L = -\frac{1}{N}\sum_{i=1}^N \sum_{c=1}^C y_{ic} \log(p_{ic})$$ - 启用分布式训练加速(需配置GPU资源)[^2]。 --- #### **4. 训练与调优** - **启动训练任务**:提交任务后,平台会自动分配计算资源并监控训练进度。 - **Prompt优化**:使用内置的Prompt自动优化工具调整输入指令,提升模型输出质量。 - **模型微调**:通过少量领域数据(如医疗问答对)进行微调,增强模型在垂直场景的表现。 --- #### **5. 验证与部署** - **性能评估**:使用验证集测试模型准确率、召回率等指标,并通过A/B测试对比基线模型。 - **部署模型**:将训练好的模型发布至**模型中心**,生成API接口供业务系统调用。 - **持续监控**:利用平台观测功能分析模型推理延迟、资源占用等运行时指标。 --- #### **6. 权限与协作管理** - 通过企业级权限系统控制模型访问权限,确保数据与模型的安全性。 - 支持团队协作开发,例如多人共同调试训练流水线。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值