端到端大模型 vs. 自己训练专用模型

训练自己的 AI 模型比你想象的要容易得多。

我将向你展示如何仅使用基本的开发技能来做到这一点,对我们来说,这种方式比使用 OpenAI 提供的现成大型模型更快、更便宜、效果更好。

但首先,为什么不直接使用 LLM?

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

1、为什么不直接使用 LLM?

根据我们的经验,我们尝试将 LLM 应用于我们的问题,例如 OpenAI 的 GPT-3 或 GPT-4,但结果对我们的用例非常令人失望。它非常慢、非常昂贵、非常不可预测,并且很难定制。

因此,我们改为训练自己的模型。

这并不像我们预期的那么具有挑战性,而且由于我们的模型很小且很专业,因此结果就是它们的速度快了 1,000 倍以上,而且成本更低。

它们不仅更好地满足了我们的用例,而且更可预测、更可靠,当然,可定制性也更高。

那么,让我们来分析一下如何像我们一样训练自己的专用 AI 模型。

2、分解问题

首先,你需要将问题分解成更小的部分。在我们的案例中,我们希望采用任何 Figma 设计并将其自动转换为高质量代码。

为了解决这个问题,我们首先探索了各种选择。

### 部署和训练自定义大规模机器学习模型的方法 #### 使用 Spark MLlib 进行分布式机器学习 Spark MLlib 是 Apache Spark 的机器学习库,专为大规模数据集设计。借助 Spark MLlib 可以高效地构建、训练以及部署分布式的机器学习模型[^1]。 对于大规模的数据处理需求,Spark 提供了弹性分布式数据集(RDD),它允许开发者以一种直观的方式操作分布在集群中的数据集合。MLlib 支持多种算法,包括分类、回归、聚类等,并且能够很好地与其他 Spark 组件集成工作。当涉及到实际的应用场景时,除了基本的建模流程外,还需要考虑诸如特征工程、参数调整等问题来提升最终的效果表现。 为了简化从开发到生产的过渡,在完成本地实验之后可以直接将代码迁移到云端或企业内部服务器上运行完整的端到端管道。此外,还可以利用 Kubernetes 或者 YARN 来管理资源分配给不同的任务实例,从而确保整个系统的稳定性和效率。 #### 解决模型调用与部署难题 面对已经经过充分验证后的高质量模型却不知如何投入使用的困境,建议采用 RESTful API 接口的形式对外提供服务。RESTful 架构风格使得客户端可以通过 HTTP 请求访问远程服务器上的功能模块;而对于 Python 用户来说,则有 Flask 和 FastAPI 等轻量级框架可供选择用于快速创建这样的接口[^2]。 另一种常见的做法是使用 Docker 容器化技术打包应用程序及其依赖项一起发布出去。容器化的最大优势在于其可移植性强——无论是在笔记本电脑还是云平台上都能保持一致的行为特性。Docker Compose 文件可以帮助编排多容器应用,而 Helm 则适用于 K8s 上的服务配置描述文件编写。 最后值得注意的是,针对特定行业领域内的业务逻辑定制化程度较高的情况,可能需要额外引入 MLOps 工具链如 Kubeflow、Seldon Core 等进一步增强自动化运维能力,保障持续交付的质量标准得以贯彻执行。 #### 结合硬件加速优化性能 随着深度神经网络架构日益庞大复杂,单靠 CPU 计算力难以支撑起高效的迭代更新周期。此时便要充分发挥 GPU/FPGA/TPU 等专用芯片的优势来进行矩阵运算加速。NVIDIA CUDA 平台配合 cuDNN 库能极大限度挖掘 NVIDIA 显卡潜力;Intel OpenVINO Toolkit 主打异构计算平台间的无缝衔接互通性;Google TensorFlow Serving 更侧重于线上推理环节低延迟响应诉求等方面各有千秋[^3]。 通过合理规划软硬协同工作机制,不仅有助于缩短整体项目周期,同时也降低了后期维护成本开销。因此,在启动新项目之前应当综合考量目标应用场景特点做出最优决策方案。 ```python from pyspark.ml import PipelineModel import mlflow # 加载已保存的最佳模型 best_model = PipelineModel.load("path/to/best/model") # 将模型转换成 PMML 格式以便后续导出至其他系统中重用 pmml_string = best_model.write().format("pmml").save() # 使用 MLFlow 跟踪记录版本信息便于回溯查询历史变更轨迹 with mlflow.start_run(): mlflow.log_param("model_type", "RandomForest") mlflow.spark.save_model(best_model, "runs:/current/run_id/artifacts/models") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值