01
与ChatGPT相比,倾云私有化大模型的优势主要体现在以下几个方面
1. 数据隐私和安全:私有化大模型将模型和数据部署在企业自己的内部环境中,确保敏感数据不会离开企业的控制范围,有效降低了数据泄露和安全风险。
2. 定制化和灵活性:私有化大模型允许企业根据自身业务需求进行定制化开发和部署,适应企业特定的场景和任务,灵活性更高,不受OpenAi服务提供商的限制。
3. 性能和速度:在私有化部署中,企业可以优化硬件和网络设施,以满足高性能计算和低延迟的需求,提高模型推理速度和响应时间,从而更好地支持实时应用。
4. 自主研发和创新:通过私有化部署,企业可以自主研发和改进大模型,满足自身特定的研究和创新需求,而不仅限于使用OpenAi提供的模型。
5. 避免服务限制和停机风险:使用OpenAi提供的大模型服务可能会受到服务限制、停机风险或价格调整等影响,而私有化部署可以避免这些潜在问题,确保稳定的运行。
02 公司产品解决方案包括以下内容
1.提供LLMOps 平台:该平台支持创建原生应用和模型训练,使用Embedding技术并兼容Langchain使其多种模型兼容,如GPT4和GPT3.5以及其他开源大模型如chatglm2、vicunad等,实现私有化训练,数据利用的解决方案。
2. 开源大模型私有化部署方案:提供所有开源大模型私有化部署方案,包括模型量化、API暴露和向量模型私有化,使其内网检索,帮助企业保护敏感数据安全性。
3. DB-GPT部署与本地化模型数据库打通:公司实现了DB-GPT部署,并将其与本地化模型数据库打通,实现通过语言大模型问答得到数据库内数据,可以生成SQL、自动执行SQL、SQL纠错、数据库问答,并提供可视化报表,帮助企业更高效地利用数据。
4. 基于GPT大模型应用的扩展定制开发:公司提供基于GPT大模型的扩展应用定制开发服务,帮助企业根据自身需求定制各种应用,提高工作效率和用户体验。
03
优势
-
综合解决方案:提供全方位的解决方案,涵盖了模型部署、训练、应用开发、数据利用等多个方面,为企业提供一站式服务,简化了技术整合和管理过程。
-
私有化保护:大模型私有化部署方案帮助企业保护敏感信息泄露,确保信息安全。
-
数据库整合:搭建DB-GPT部署和数据库打通,企业可以更轻松地从大模型问答中获取数据库内的数据,支持更智能化的数据操作和决策。
-
定制扩展开发:帮助企业根据自身需求,定制基于GPT大模型的应用,提高业务流程的智能化和个性化,增强了企业的竞争力。
04
优势附加值
1. 高度可扩展性:公司的解决方案具有高度可扩展性,可以根据企业的业务增长和需求变化进行灵活调整和扩展,确保系统持续地适应不断变化的业务环境。
2. 自动化与智能化:公司的解决方案充分利用了自动化和智能化技术,通过自动化流程和智能决策支持,帮助企业节省时间和人力成本,提高工作效率。
3. 竞争优势:通过采用最先进的大模型和技术,企业可以在市场上获得竞争优势,提供更智能、更创新的产品和服务,吸引更多用户和客户。
4. 数据驱动决策:通过与数据库打通并支持SQL执行与可视化报表,企业可以更深入地了解数据,基于大模型的问答和分析,帮助企业做出更明智的决策。
5. 技术支持与培训:公司提供专业的技术支持和培训,帮助企业快速上手并充分发挥解决方案的优势,保障企业在使用过程中的顺利进行。
综上所述,公司产品解决方案为企业带来了更高效、更安全、更智能的数据利用和应用开发能力,为企业提供全方位的支持和帮助,有助于提升企业的创新能力和业务水平,助力企业实现数字化转型和智化升级。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓