AI Agent 2025 的十大趋势

{"type":"load_by_key","key":"auto_image_0_0","image_type":"search"}

趋势一:采用率大幅增长,商业价值凸显​

步入 2025 年,AI Agent 的应用呈现出爆发式增长的态势,已成为众多企业提升效率、优化运营的得力助手。Gartner 更是将 Agentic AI 列为 2025 年顶级技术趋势之首,彰显了其在行业内的重要地位。​

微软作为科技行业的领军者,积极投身于 Agent 人工智能的开发。它与英国政府达成多年合作协议,为公共部门提供人工智能工具,助力其提升工作效率。这一举措不仅体现了微软对 AI Agent 前景的坚定信心,也为其他企业树立了榜样。据 Gartner 预测,到 2028 年,约 15% 的日常工作决策将由 Agentic AI 自主完成,而企业软件应用程序中包含 Agentic AI 的比例也将飙升至 33%,这一数据直观地展示了 AI Agent 在未来几年的广阔发展空间。​

与此同时,Capgemini 的报告也指出,高达 82% 的组织计划在 2026 年前集成 AI Agent,用于电子邮件生成、编码和数据分析等任务。德勤的研究同样显示,2025 年,25% 使用生成式 AI 的企业将部署 AI Agent,到 2027 年,这一比例预计将跃升至 50%。​

在实际应用中,金融领域的自动交易机器人能够实时分析市场数据,抓住转瞬即逝的投资机会,为投资者创造丰厚回报;零售行业的个性化购物助手,能根据消费者的浏览和购买历史,精准推荐商品,提升购物体验和转化率;医疗保健中的虚拟健康顾问,则可以为患者提供初步诊断建议、健康管理方案,缓解医疗资源紧张的问题。这些成功案例充分证明了 AI Agent 在不同行业的巨大价值和应用潜力,也促使更多企业加快了引入 AIAgent 的步伐 。​

趋势二:多模态融合,感知与交互升级​

在 2025 年,AI Agent 的多模态融合能力将取得重大突破,使其能够更加自然、高效地与人类进行交互。通过融合图像、语音、文本等多模态信息,AI Agent 能够为用户提供更加丰富、全面的服务体验 。​

微软开源的多模态 AI Agent 基础模型 Magma,便是这一趋势的典型代表。Magma 能够自动处理图像、视频、文本等不同类型的数据,具备跨越数字与物理世界的多模态能力。在购物场景中,用户只需通过语音或文字指令,Magma 就能自动完成下单操作,大幅提升购物效率。其内置的心理预测功能,还能增强对未来视频帧中时空动态的理解能力,准确推测视频中人物或物体的意图和未来行为,为用户提供更智能的决策支持 。​

谷歌的 Gemini 2.0 同样在多模态融合方面表现出色。它支持图像、视频、音频多模态输入与输出,还能直接本地调用工具,如谷歌搜索、代码工具等。基于 Gemini 2.0,谷歌推出了 Jules、Colab 数据科学代理等原型,展现了其在编程、数据分析等领域的强大应用潜力。在实际应用中,用户可以向 Gemini 2.0 输入图片和文字描述,让其生成相关的创意文案或设计方案,实现了多模态信息的深度融合与交互 。​

多模态融合的 AI Agent 在智能客服、智能家居、智能教育等领域都有着广泛的应用前景。在智能客服中,AI Agent 可以同时理解用户的语音和文字输入,快速准确地回答问题,提供解决方案;智能家居系统里,AI Agent 能够根据用户的语音指令、手势动作以及环境传感器数据,自动调节家居设备,营造舒适的生活环境;智能教育场景下,AI Agent 可以通过分析学生的面部表情、语音语调以及学习数据,提供个性化的学习建议和辅导 。​

趋势三:自主决策强化,任务执行更高效​

随着强化学习、深度学习等技术的不断发展,AI Agent 的自主决策能力在 2025 年得到了显著提升,能够更加高效地执行各种复杂任务。​

OpenAI 发布的智能体 Operator,便是自主决策 AI Agent 的典型代表。它基于 Computer-Using Agent (CUA) 模型,通过感知 - 推理 - 行动循环,能够像人类一样使用计算机,自动完成预订旅行住宿、餐厅预约、在线购物等繁琐任务。在餐厅预订的场景中,当用户输入 “在 Beretta 订一个今晚 7 点的双人餐位” 后,Operator 能自动启动远程浏览器会话,根据用户位置信息更正搜索结果,并在发现 7 点无空位时,主动提议 7:45 的替代时间,展现出了灵活的决策能力和强大的任务执行能力 。​

在复杂的工业生产场景中,AI Agent 可以通过实时监测生产线上的各种数据,自主判断设备是否出现故障,并及时采取相应的维修措施。它能够根据不同的故障类型,制定最优的维修方案,避免因设备故障导致的生产停滞,提高生产效率和产品质量。在物流配送领域,AI Agent 可以根据实时路况、订单信息等因素,自主规划最优的配送路线,合理安排配送车辆和人员,实现高效的物流配送服务 。​

为了实现更强大的自主决策能力,AI Agent 还在不断探索新的技术和方法。一些研究团队正在尝试将强化学习与深度学习相结合,让 AI Agent 能够在复杂环境中通过不断试错,学习到最优的决策策略。还有团队致力于开发更加智能的规划算法,使 AI Agent 能够在面对复杂任务时,快速制定出合理的执行计划 。​

趋势四:多智能体协作,复杂问题求解​

在 2025 年,多智能体协作系统将成为解决复杂问题的关键技术,通过多个智能体之间的协同合作,实现更高效、更智能的问题求解。​

在物流调度场景中,多智能体协作系统能够根据实时路况、订单信息、车辆状态等多方面因素,合理分配运输任务,优化配送路线。不同的智能体可以分别负责车辆调度、货物分配、路径规划等任务,它们之间通过高效的通信和协作机制,共同完成物流配送的全过程。例如,当遇到突发的交通拥堵时,负责路径规划的智能体可以实时调整配送路线,并及时通知负责车辆调度的智能体,确保货物能够按时送达目的地 。这种多智能体协作的物流调度系统,不仅提高了物流配送的效率,还降低了运输成本,提升了客户满意度。​

在科研项目中,多智能体协作系统也发挥着重要作用。不同领域的智能体可以协作完成复杂的科研任务,如数据分析、模型构建、实验设计等。以材料科学研究为例,一个智能体可以负责收集和分析实验数据,另一个智能体则可以根据这些数据构建材料模型,预测材料性能,还有的智能体可以根据模型结果设计新的实验方案 。通过多智能体的协作,科研人员能够更高效地进行研究,加速科研成果的产出。​

在制造业中,多智能体协作系统可以实现生产线的智能化管理。不同的智能体可以分别负责设备监控、质量检测、生产调度等任务,它们之间相互协作,确保生产线的高效运行。当设备出现故障时,负责设备监控的智能体可以及时发现问题,并通知负责维修的智能体进行处理,同时,负责生产调度的智能体可以调整生产计划,减少因设备故障带来的损失 。​

趋势五:垂直领域深耕,专业服务更精准​

在 2025 年,AI Agent 将在垂直领域实现深度拓展,通过定制化开发,为医疗、金融、教育等行业提供更加精准、专业的服务 。​

在医疗领域,AI Agent 能够对患者的病历、影像等多源数据进行综合分析,辅助医生进行疾病诊断和治疗方案的制定。如谷歌旗下的 DeepMind 开发的 Healthcare AI Agent,能够快速分析医学影像,帮助医生检测疾病,其在糖尿病视网膜病变的检测中,准确率已经达到了专业眼科医生的水平 。IBM Watson for Oncology 则可以根据患者的病情、基因数据等信息,提供个性化的癌症治疗方案建议,为医生的决策提供有力支持 。这些医疗 AI Agent 不仅提高了诊断的准确性和效率,还能够帮助医生更好地管理患者的健康状况,实现疾病的早期预防和干预 。​

金融行业中,AI Agent 在风险评估、投资顾问、智能投顾等方面发挥着重要作用。例如,摩根大通利用 AI Agent 开发的 COIN 系统,能够自动处理外汇交易中的合约解析和数据核对工作,将原来需要大量人力和时间的工作缩短至秒级完成,大大提高了工作效率和准确性 。在投资顾问领域,AI Agent 可以根据用户的财务状况、投资目标、风险偏好等因素,为用户提供个性化的投资组合建议,并实时跟踪市场动态,调整投资策略 。像嘉信理财推出的智能投顾平台,通过 AI Agent 为投资者提供自动化的投资管理服务,降低了投资门槛,让更多人能够享受到专业的投资顾问服务 。​

教育领域的 AI Agent 则致力于为学生提供个性化的学习体验。它们可以根据学生的学习进度、知识掌握情况、学习习惯等因素,制定个性化的学习计划,提供针对性的学习辅导和答疑服务 。以松鼠 AI 的智适应学习系统为例,该系统利用 AI Agent 技术,能够精准分析每个学生的学习情况,为学生推送最适合他们的学习内容和练习题目,实现因材施教 。学生在学习过程中遇到问题时,AI Agent 可以随时提供解答和指导,帮助学生克服困难,提高学习效果 。这种个性化的学习方式不仅能够提高学生的学习兴趣和积极性,还能够有效提升学习效率,帮助学生更好地掌握知识和技能 。​

趋势六:开源生态繁荣,开发门槛降低​

2025 年,AI Agent 的开源生态迎来了蓬勃发展的黄金时期,众多开源框架和工具如雨后春笋般涌现,为开发者们提供了丰富的资源和强大的支持,极大地降低了开发门槛,推动了 AI Agent 技术的广泛应用和创新发展 。​

LangChain 作为 AI Agent 领域的重要开源框架,为开发者提供了一系列强大的工具和组件,使他们能够轻松地构建和部署 AI Agent 应用。通过 LangChain,开发者可以方便地连接各种大语言模型,如 GPT、BERT 等,利用这些模型的强大语言处理能力,为 AI Agent 赋予智能交互的能力 。它还支持多种类型的工具集成,如搜索引擎、数据库、文件系统等,让 AI Agent 能够与外部环境进行高效的交互,获取和处理各种信息 。在实际应用中,开发者可以使用 LangChain 快速搭建一个智能客服系统,该系统能够自动理解用户的问题,并通过调用搜索引擎和知识库,为用户提供准确的答案 。这种基于 LangChain 的开发方式,大大缩短了开发周期,提高了开发效率,使得更多的企业和开发者能够参与到 AI Agent 的开发中来 。​

除了 LangChain,AutoGen、MetaGPT 等开源框架也在 2025 年取得了显著的进展。AutoGen 支持多智能体协作,能够帮助开发者构建更加复杂和智能的多智能体系统 。在一个智能城市的规划项目中,使用 AutoGen 可以让不同的智能体分别负责交通管理、能源分配、环境监测等任务,它们之间通过协作和通信,共同实现城市的智能化管理 。MetaGPT 则专注于代码生成和软件开发,能够辅助开发者快速生成高质量的代码,提高软件开发的效率 。当开发者需要开发一个新的应用程序时,MetaGPT 可以根据需求自动生成部分代码框架和基础功能,开发者只需在此基础上进行进一步的完善和优化,即可完成应用程序的开发 。​

这些开源框架和工具的出现,不仅为 AI Agent 的开发提供了便利,还促进了开发者之间的交流与合作。开源社区成为了知识共享和技术创新的重要平台,开发者们可以在社区中分享自己的经验和成果,共同解决开发过程中遇到的问题,推动 AI Agent 技术不断向前发展 。​

趋势七:算力需求增长,硬件协同发展​

随着 AI Agent 应用场景的不断拓展和任务复杂度的不断提高,对算力的需求也呈现出爆发式增长。为了满足这一需求,芯片、云计算等硬件技术与 AI Agent 实现了深度协同发展,共同推动 AI Agent 技术的进步 。​

在芯片领域,英伟达的 H100、A100 等 GPU 芯片凭借其强大的并行计算能力,成为 AI Agent 训练和推理的首选硬件。这些芯片能够快速处理大量的数据,为 AI Agent 的智能决策提供有力支持。以 OpenAI 的 GPT-4 训练为例,就需要大量的英伟达 GPU 芯片来完成复杂的模型训练任务 。同时,为了进一步提升芯片的性能和效率,业界也在不断探索新的芯片架构和技术,如 ASIC(专用集成电路)芯片的定制化设计,能够针对特定的 AI Agent 应用场景进行优化,提供更高的计算效率和更低的能耗 。像谷歌的 TPU(张量处理单元)芯片,就是专门为加速深度学习计算而设计的 ASIC 芯片,在谷歌的 AI Agent 应用中发挥了重要作用 。​

云计算作为一种灵活、高效的计算资源提供方式,也为 AI Agent 的发展提供了强大的支持。亚马逊的 AWS、微软的 Azure、谷歌的 GCP 等云计算平台,为企业和开发者提供了丰富的算力资源和便捷的服务,使得他们能够快速部署和运行 AI Agent 应用,无需担心硬件基础设施的建设和维护问题 。企业可以根据自身的业务需求,灵活选择云计算平台提供的不同规格的算力资源,实现按需付费,降低运营成本 。同时,云计算平台还提供了一系列的工具和服务,如数据存储、模型训练框架、推理引擎等,帮助开发者更加高效地开发和部署 AI Agent 应用 。​

除了芯片和云计算,混合算力架构也逐渐成为 AI Agent 发展的重要趋势。这种架构融合了 CPU、GPU、ASIC 等多种计算单元的优势,能够根据不同的任务需求,灵活调配算力资源,实现更高效的计算。例如,在一些对实时性要求较高的 AI Agent 应用中,如智能驾驶、智能安防等,混合算力架构可以利用 GPU 的强大并行计算能力进行快速的数据处理,同时利用 ASIC 芯片的低功耗和高可靠性,实现长时间的稳定运行 。在智能驾驶场景中,AI Agent 需要实时处理大量的传感器数据,做出驾驶决策,混合算力架构能够确保 AI Agent 在高效运行的同时,满足车辆对功耗和可靠性的严格要求 。​

趋势八:隐私安全受重视,保障机制完善​

随着 AI Agent 在各个领域的广泛应用,数据隐私和安全问题日益凸显,成为了 2025 年 AI Agent 发展中备受关注的焦点。AI Agent 在运行过程中,会涉及大量用户数据的收集、存储、处理和传输,这些数据一旦泄露或被滥用,将给用户带来严重的损失 。​

为了解决这些问题,一系列先进的保障技术应运而生。加密技术是其中的关键一环,它能够对数据进行加密处理,确保数据在传输和存储过程中的安全性,即使数据被窃取,攻击者也难以获取其中的有效信息 。同态加密技术允许在密文上进行计算,而无需解密,使得数据在加密状态下也能被处理,进一步增强了数据的安全性 。联邦学习则通过在多个参与方之间协同训练模型,而无需共享原始数据,实现了数据的 “可用不可见”,有效保护了数据隐私 。在医疗领域,不同医院可以利用联邦学习技术,联合训练疾病诊断模型,而不必将患者的敏感医疗数据集中到一起,既提高了模型的准确性,又保护了患者的隐私 。​

法规政策的完善也为 AI Agent 的隐私安全提供了有力保障。各国政府纷纷出台相关法律法规,对 AI Agent 的数据收集、使用、存储等环节进行规范和约束。欧盟的《通用数据保护条例》(GDPR)对个人数据的保护做出了严格规定,要求企业在收集和使用个人数据时,必须获得用户的明确同意,并采取有效的安全措施保护数据 。中国也发布了《网络安全法》《数据安全法》等法律法规,加强对数据安全和个人信息保护的监管力度 。这些法规政策的出台,促使企业更加重视 AI Agent 的隐私安全问题,加强技术研发和管理措施,以确保合规运营 。​

企业自身也在不断加强隐私安全管理。建立完善的数据访问控制机制,严格限制对数据的访问权限,只有经过授权的人员和智能体才能访问敏感数据 。加强对 AI Agent 的安全审计,实时监测其运行状态,及时发现和处理安全漏洞 。一些企业还采用了区块链技术,利用其不可篡改和可追溯的特性,确保数据的完整性和安全性 。在金融领域,区块链技术可以用于记录和验证 AI Agent 的交易行为,防止数据被篡改和伪造,保障金融交易的安全 。​

趋势九:与边缘计算结合,实时响应更及时​

在 2025 年,AI Agent 与边缘计算的融合成为了一个备受瞩目的趋势,为实现更高效、更智能的实时响应提供了强大的支持 。​

在智能安防领域,AI Agent 与边缘计算的结合展现出了巨大的优势。传统的安防监控系统往往依赖于云端计算,数据需要传输到远程服务器进行处理,这不仅导致了处理延迟,还可能因网络问题影响监控效果 。而将 AI Agent 部署在边缘设备上,如智能摄像头,能够实现实时的视频分析和决策。这些智能摄像头可以在本地对视频流进行实时处理,快速识别出异常行为,如入侵、斗殴等,并立即发出警报 。即使在网络连接不稳定或中断的情况下,边缘设备上的 AI Agent 仍能继续工作,确保监控的连续性和安全性 。某智能安防系统采用了 AI Agent 与边缘计算相结合的技术,在一个大型商场的监控中,成功识别并及时处理了多起异常事件,有效提升了商场的安全防范水平 。​

工业监控场景中,AI Agent 与边缘计算的融合也发挥着重要作用。在工业生产线上,大量的传感器实时采集设备的运行数据,如温度、压力、振动等 。将 AI Agent 部署在边缘计算节点上,可以实时分析这些数据,及时发现设备的潜在故障隐患,并自动采取相应的措施进行调整或修复 。这大大提高了生产的稳定性和效率,减少了因设备故障导致的生产中断和损失 。在一家汽车制造工厂,通过 AI Agent 与边缘计算的协同工作,实现了对生产线上关键设备的实时监控和智能维护,设备故障率降低了 30%,生产效率提高了 20% 。​

AI Agent 与边缘计算的结合还能够有效减少数据传输量,降低对网络带宽的需求 。边缘设备可以在本地对数据进行初步处理和分析,只将关键信息传输到云端,减轻了网络负担,提高了系统的整体性能 。这种结合方式也有助于保护数据隐私,敏感数据可以在本地进行处理,避免了在传输过程中可能出现的泄露风险 。​

趋势十:人机协作深化,工作模式变革​

2025 年,AI Agent 将进一步深化与人类的协作,引发工作模式的深刻变革,开启人机协同的全新工作时代。在办公领域,AI Agent 与人类的协作变得更加紧密和高效。金山办公旗下的 WPS 365 通过整合 AI 技术,为用户提供了智能文档处理、智能表格分析、智能演示制作等一系列功能 。在文档撰写过程中,WPS AI 能够根据用户输入的关键词和内容大纲,自动生成相关的文本段落,大大提高了写作效率 。当用户需要撰写一份市场调研报告时,只需输入报告主题和关键要点,WPS AI 就能迅速收集相关资料,并生成报告的初稿,用户在此基础上进行修改和完善,即可完成一份高质量的报告 。在表格数据处理方面,AI Agent 可以自动识别数据规律,进行数据分析和可视化展示,帮助用户快速洞察数据背后的信息 。它能够根据用户的需求,自动生成各种统计图表,如柱状图、折线图、饼图等,直观地呈现数据的变化趋势和分布情况 。​

在设计领域,AI Agent 同样发挥着重要作用。以室内设计为例,基于多模态大模型的 FlagStudio 构建了涵盖需求解析、方案生成与施工管控等多个环节的开源工具链 。在需求解析阶段,利用 DeepSeek - R1 工具,通过智能算法分析用户的需求和偏好,为设计师提供准确的设计方向 。在方案生成阶段,StableDiffusionXL 可以在几分钟内生成多个创意设计方案,为设计师提供丰富的灵感来源 。设计师可以根据自己的创意和专业知识,对这些方案进行筛选和优化,最终确定最佳的设计方案 。在施工管控阶段,建筑学长 AI 插件能够实时监控施工进度和质量,确保施工过程符合设计要求 。这种人机协作的设计模式,不仅提高了设计效率,还能够充分发挥设计师的创意和专业能力,实现设计质量的提升 。​

在医疗领域,AI Agent 与医生的协作也取得了显著进展。AI Agent 可以辅助医生进行疾病诊断、病历分析、治疗方案制定等工作 。在疾病诊断方面,AI Agent 能够快速分析患者的医学影像、检验报告等数据,帮助医生发现潜在的疾病迹象,提高诊断的准确性和效率 。谷歌旗下的 DeepMind 开发的 Healthcare AI Agent,在糖尿病视网膜病变的检测中,准确率已经达到了专业眼科医生的水平 。在病历分析方面,AI Agent 可以自动提取病历中的关键信息,进行分类和整理,为医生提供全面的患者信息,方便医生进行病情评估和治疗决策 。在治疗方案制定方面,AI Agent 可以根据患者的病情、身体状况、基因数据等信息,为医生提供个性化的治疗方案建议,帮助医生制定更加科学、合理的治疗计划 。​

在教育领域,AI Agent 为教师和学生提供了个性化的教学和学习支持。AI Agent 可以根据学生的学习进度、知识掌握情况、学习习惯等因素,为学生制定个性化的学习计划,提供针对性的学习辅导和答疑服务 。松鼠 AI 的智适应学习系统利用 AI Agent 技术,能够精准分析每个学生的学习情况,为学生推送最适合他们的学习内容和练习题目,实现因材施教 。在教学过程中,AI Agent 可以辅助教师进行教学管理,如自动批改作业、分析学生的学习成绩等,减轻教师的工作负担,让教师能够有更多的时间和精力关注学生的个性化需求和发展 。​

随着 AI Agent 技术的不断发展和应用,人机协作的工作模式将逐渐成为主流。人类将专注于发挥自己的创造力、情感理解能力和战略决策能力,而 AI Agent 则承担起数据处理、任务执行、规律分析等重复性、规律性的工作 。这种人机协作的模式将充分发挥人类和 AI Agent 的优势,实现工作效率和质量的双重提升,为各行业的发展带来新的机遇和变革 。​

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值