李群与李代数基础:第2节 李群的李代数与不变微分算子
1. 背景介绍
1.1 问题的由来
李群理论起源于19世纪末,由法国数学家索菲斯·李(Sophus Lie)提出,旨在研究连续变换群的概念。李群在数学物理、几何学以及现代计算机科学中具有广泛的应用,尤其是在机器学习、计算机视觉、机器人技术和模式识别等领域。李群理论的核心是将连续的变换结构化,以便于进行精确的数学分析和有效的算法设计。
1.2 研究现状
在过去的几十年里,李群理论及其在各种应用中的研究取得了显著进展。特别是在机器学习领域,李群的概念被用来处理数据集的内在结构,例如旋转、平移和缩放等变换。李群的结构,特别是李群的李代数,为理解这些变换提供了数学框架,并在算法设计中起到了关键作用。
1.3 研究意义
深入理解李群及其李代数对于构建能够适应复杂变换的数据模型至关重要。李群理论为机器学习提供了强大的数学工具,使得算法能够更加灵活地处理非欧几里德空间中的数据。此外,李群理论还促进了几何深度学习的发展,为神经网络提供了一种自然的框架来处理具有内在几何结构的数据集。
1.4 本文结构
本文将从李群的定义出发,探讨