1. 背景介绍
1.1 机器学习的范式演进:从监督学习到Zero-Shot学习
机器学习的传统方法,如监督学习,需要大量的标注数据进行训练。然而,在现实世界中,获取标注数据的成本往往很高,甚至有些情况下无法获取。为了解决这个问题,研究者们一直在探索新的学习范式,其中Zero-Shot学习(零样本学习)成为近年来研究的热点。
Zero-Shot学习的目标是让模型能够在没有见过任何样本的情况下,识别新的类别。例如,一个训练好的图像分类模型,在没有见过“企鹅”的图片的情况下,能够识别出“企鹅”这一类别。
1.2 大语言模型与Zero-Shot学习的结合:新的可能性
近年来,随着深度学习技术的快速发展,大语言模型(LLM)展现出强大的能力。LLM不仅能够理解和生成自然语言,还能够进行推理和解决问题。将LLM与Zero-Shot学习结合,为解决实际问题提供了新的可能性。
LLM的Zero-Shot学习能力主要源于其强大的语义理解能力。通过学习大量的文本数据,LLM能够理解不同概念之间的语义关系。即使没有见过某个概念的样本,LLM也能够根据其语义描述,