Zero-shot通俗理解

Zero-shot学习是一种深度学习方法,使模型能在无标记样本的情况下识别新类别。它利用知识转移和类别描述等信息,通过特征提取和分类器进行跨领域应用,如图像识别、自然语言处理。研究有助于提升模型的泛化能力并解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Zero-shot学习(Zero-shot Learning,ZSL)是深度学习领域中的一个重要研究方向,它旨在让机器学习模型能够在没有见过特定类别样本的情况下,对该类别进行识别或分类。换句话说,ZSL试图让模型能够泛化到训练时未见过的类别上。

理解Zero-shot

  1. 传统分类方法:在传统的监督学习中,模型通常需要大量的标注数据来学习如何识别和分类特定的对象。例如,如果我们想训练一个模型来识别猫和狗,我们需要向模型提供大量标记为“猫”和“狗”的图片。

  2. Zero-shot学习的挑战:然而,在现实世界中,存在无数的类别,我们不可能为每一个类别都收集到足够的标注数据。Zero-shot学习的目标是让模型能够在只有有限类别训练数据的情况下,识别出新的、未见过的类别。

  3. 知识转移:为了实现这一点,ZSL通常依赖于知识转移技术。模型会利用在训练数据上学到的知识,结合一些额外的信息(如类别描述、属性、文本标签等),来推断出未见类别的特征和属性。

  4. 属性和描述:在Zero-shot学习中,类别的属性和描述起到了关键作用。例如,如果我们告诉模型“猫”是一种小型、有毛、四足、会喵喵叫的动物,而“鹰”是一种大型、有羽毛、两足、会飞翔的动物,即使模型从未见过这两种动物,它也可以通过这些描述来区分新的猫和鹰的图片。

  5. 模型结构:ZSL模型通常包含两个主要部分:一个特征提取器(通常是

### Zero-Shot Learning vs Single-Shot Learning vs Multi-Shot Learning #### 定义与概念 Zero-shot 学习是一种特殊形式的学习方法,在这种情况下,模型能够在不接触任何标记样本的情况下识别新的类别。该技术依赖于辅助信息来推断未知类别的特征[^1]。 Single-shot 和 multi-shot 学习则属于少样本学习(few-shot learning),其中 single-shot 表示仅提供一个样本来定义新类别;而 multi-shot 则指提供了少量多个样本用于同一目的。这些场景下,算法通过利用先前获得的知识来进行快速适应并做出预测[^3]。 #### 工作原理对比 对于 zero-shot 学习而言,其核心在于如何建立已知类别属性与其他未见过的数据之间的联系。通常会借助外部资源如词向量或其他描述性元数据作为桥梁实现跨域推理能力。 相比之下,single-shot 及 multi-shot 方法更侧重于从有限数量的具体实例中提取模式,并将其泛化到相似但未曾遇到过的案例上去。这类方法往往采用度量空间构建、原型网络或记忆增强型架构等方式促进迁移过程的有效性。 ```python # 示例代码展示三种方式的区别: def zero_shot_learn(new_class_description): # 使用预训练好的语义表示进行分类决策 pass def few_shot_learn(training_samples_per_class): if isinstance(training_samples_per_class, dict) and all(len(v)==1 for v in training_samples_per_class.values()): mode = 'single-shot' elif isinstance(training_samples_per_class, dict) and all(1<len(v)<k for v in training_samples_per_class.values()): mode = 'multi-shot' # 基于给定的支持集调整参数以适应新任务 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值