个人经验,仅供参考
思路总结
思路1:通过技巧将行列式的形式变好,再归纳地展开
注:
- “好”的标准在于易于归纳
- “技巧”的含义丰富,常用技巧包括:借助模板,套用结论,初等变换,拆分,升阶等操作
- “展开”的含义既可指按某一行、某一列展开,也可指按Laplace定理的方式展开
思路2:将行列式视为多项式,尽可能提取多项式的因子
思路3:将行列式降阶
注:降阶的手段
- 将矩阵表达为两个矩阵之积,使用行列式乘法定理,或Cauchy-Binet公式
- 将矩阵分块,使用降阶公式;或先使用降阶公式,化矩阵为分块阵,再变形
模板
上(下)三角行列式
行列式的值即为对角线元素之积
Vandermonde行列式
V n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋮ 1 x n x n 2 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x i − x j ) V_n=\begin{vmatrix} 1&x_1&x_1^2&\cdots&x_1^{n-1}\\ 1&x_2&x_2^2&\cdots&x_2^{n-1}\\ \vdots&\vdots&\vdots&&\vdots\\ 1&x_n&x_n^2&\cdots&x_n^{n-1}\\ \end{vmatrix}=\prod\limits_{1\leq i<j\leq n}(x_i-x_j) Vn= 11⋮1x1x2⋮xnx12x22⋮xn2⋯⋯⋯x1n−1x2n−1⋮xnn−1 =1≤i<j≤n∏(xi−xj)
证明思路:(用初等变换进行归纳展开)
每一行减去第一行,得 V n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 0 x 2 − x 1 x 2 2 − x 1 2 ⋯ x 2 n − 1 − x 1 n − 1 ⋮ ⋮ ⋮ ⋮ 0 x n − x 1 x n 2 − x 1 2 ⋯ x n n − 1 − x 1 n − 1 ∣ V_n=\begin{vmatrix} 1&x_1&x_1^2&\cdots&x_1^{n-1}\\ 0&x_2-x_1&x_2^2-x_1^2&\cdots&x_2^{n-1}-x_1^{n-1}\\ \vdots&\vdots&\vdots&&\vdots\\ 0&x_n-x_1&x_n^2-x_1^2&\cdots&x_n^{n-1}-x_1^{n-1}\\ \end{vmatrix} Vn=
10⋮0x1x2−x1⋮xn−x1x12x22−x12⋮xn2−x12⋯⋯⋯x1n−1x2n−1−x1n−1⋮xnn−1−x1n−1
按第一列展开,并提取每行的公因式,得
( x 2 − x 1 ) ⋯ ( x n − x 1 ) ∣ 1 x 2 + x 1 ⋯ x 1 n − 2 + ⋯ + x 2 n − 1 ⋮ ⋮ ⋮ 1 x n + x 1 ⋯ x n n − 2 + ⋯ + x 1 n − 2 ∣ (x_2-x_1)\cdots(x_n-x_1)\begin{vmatrix} 1&x_2+x_1&\cdots&x_1^{n-2}+\cdots +x_2^{n-1}\\ \vdots&\vdots&&\vdots\\ 1&x_n+x_1&\cdots&x_n^{n-2}+\cdots+x_1^{n-2}\\ \end{vmatrix} (x2