高等代数复习:应试经验:求行列式

本文介绍了矩阵行列式的三种主要处理方法:通过技巧变形、视为多项式提取因子和降阶展开。详细讲解了上三角、Vandermonde、爪型和三对角行列式的性质,以及如何利用初等变换和降阶公式进行计算和证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人经验,仅供参考

思路总结

思路1:通过技巧将行列式的形式变好,再归纳地展开

注:

  1. “好”的标准在于易于归纳
  2. “技巧”的含义丰富,常用技巧包括:借助模板,套用结论,初等变换,拆分,升阶等操作
  3. “展开”的含义既可指按某一行、某一列展开,也可指按Laplace定理的方式展开

思路2:将行列式视为多项式,尽可能提取多项式的因子

思路3:将行列式降阶

注:降阶的手段

  1. 将矩阵表达为两个矩阵之积,使用行列式乘法定理,或Cauchy-Binet公式
  2. 将矩阵分块,使用降阶公式;或先使用降阶公式,化矩阵为分块阵,再变形

模板

上(下)三角行列式

行列式的值即为对角线元素之积

Vandermonde行列式

V n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 1 ⋮ ⋮ ⋮ ⋮ 1 x n x n 2 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x i − x j ) V_n=\begin{vmatrix} 1&x_1&x_1^2&\cdots&x_1^{n-1}\\ 1&x_2&x_2^2&\cdots&x_2^{n-1}\\ \vdots&\vdots&\vdots&&\vdots\\ 1&x_n&x_n^2&\cdots&x_n^{n-1}\\ \end{vmatrix}=\prod\limits_{1\leq i<j\leq n}(x_i-x_j) Vn= 111x1x2xnx12x22xn2x1n1x2n1xnn1 =1i<jn(xixj)

证明思路:(用初等变换进行归纳展开)
每一行减去第一行,得 V n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 1 0 x 2 − x 1 x 2 2 − x 1 2 ⋯ x 2 n − 1 − x 1 n − 1 ⋮ ⋮ ⋮ ⋮ 0 x n − x 1 x n 2 − x 1 2 ⋯ x n n − 1 − x 1 n − 1 ∣ V_n=\begin{vmatrix} 1&x_1&x_1^2&\cdots&x_1^{n-1}\\ 0&x_2-x_1&x_2^2-x_1^2&\cdots&x_2^{n-1}-x_1^{n-1}\\ \vdots&\vdots&\vdots&&\vdots\\ 0&x_n-x_1&x_n^2-x_1^2&\cdots&x_n^{n-1}-x_1^{n-1}\\ \end{vmatrix} Vn= 100x1x2x1xnx1x12x22x12xn2x12x1n1x2n1x1n1xnn1x1n1 按第一列展开,并提取每行的公因式,得
( x 2 − x 1 ) ⋯ ( x n − x 1 ) ∣ 1 x 2 + x 1 ⋯ x 1 n − 2 + ⋯ + x 2 n − 1 ⋮ ⋮ ⋮ 1 x n + x 1 ⋯ x n n − 2 + ⋯ + x 1 n − 2 ∣ (x_2-x_1)\cdots(x_n-x_1)\begin{vmatrix} 1&x_2+x_1&\cdots&x_1^{n-2}+\cdots +x_2^{n-1}\\ \vdots&\vdots&&\vdots\\ 1&x_n+x_1&\cdots&x_n^{n-2}+\cdots+x_1^{n-2}\\ \end{vmatrix} (x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值