数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

逼近理论的应用——最小二乘问题、解超定、欠定方程组

离散平方逼近

设全空间 X = R n X=\mathbb{R}^n X=Rn, 在 R n \mathbb{R}_n Rn 中取 m < n m<n m<n 个线性无关的向量 ( X 1 , … , X m ) (X_1,\dots,X_m) (X1,,Xm),令 M = s p a n { X 1 , … , X m } M=span\{X_1,\dots,X_m\} M=span{X1,,Xm},则对任意 Y ∈ X \ M Y\in X\backslash M YX\M M M M 中存在唯一的最佳逼近元 X ∗ = ∑ i = 1 m c i X i X^*=\sum\limits_{i=1}^mc_iX_i X=i=1mciXi,其满足以下法方程组
∑ i = 1 m < X i , X j > c i = < Y , X j > \sum\limits_{i=1}^m<X_i,X_j>c_i=<Y,X_j> i=1m<Xi,Xj>ci=<Y,Xj>若设 A = [ X 1 , … , X m ] , C = [ c 1 , … , c m ] T A=[X_1,\dots,X_m],C=[c_1,\dots,c_m]^T A=[X1,,Xm],C=[c1,,cm]T,则方程组等效于
A T A C = A T Y A^TAC=A^TY ATAC=ATY

最小二乘解

求如下的最小化问题的解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2由离散平方逼近的理论,其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

应用:求解超定、欠定方程组

我们把线性方程组 A x = b Ax=b Ax=b 中,
未知数多于方程个数的方程组称为欠定方程组
未知数多于方程个数且有矛盾方程的方程组称为超定方程组

欠定方程组一般有多个解,超定方程组一般无解,故在工程上常用1范数或2范数意义下的最佳逼近解来作为解,即上述的最小二乘解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

参考书籍:《数值分析》李庆扬 王能超 易大义 编

  • 8
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 超定方程组是指方程的数量大于未知数的数量,通常情况下这样的方程组是无解的。最小二乘解是指在无法找到精确解的情况下,通过最小化误差的方法,得到一个在数值上最接近于解的估计值。 在Python中,可以使用NumPy库来求解超定方程组最小二乘解。首先,我们需要创建一个矩阵来表示方程组的系数,以及一个向量来表示方程组的常数项。 假设我们有一个4个方程和3个未知数的超定方程组,可以按照如下方式创建系数矩阵A和常数向量b: ```python import numpy as np A = np.array([[2, 1, 3], [4, 2, 1], [1, 3, 2], [3, 1, 1]]) b = np.array([10, 8, 6, 7]) ``` 接下来,可以使用NumPy库的`lstsq`函数来求解最小二乘解: ```python x, residuals, _, _ = np.linalg.lstsq(A, b, rcond=None) ``` 其中,`x`表示最小二乘解,`residuals`表示求解过程中的残差,`rcond=None`表示使用默认的阈值。最终,`x`将包含3个最小二乘解的估计值。 需要注意的是,`lstsq`函数默认使用奇异值分解方法来求解最小二乘问题。如果矩阵`A`的秩不满足方程组的个数,那么`lstsq`函数将返回一个在数值上最接近的解。 综上,我们可以通过使用NumPy库的`lstsq`函数来求解超定方程组最小二乘解。 ### 回答2: 超定方程组指方程个数大于未知数个数的方程组。在解超定方程组时,我们往往要求找出能最小化方程误差的解,这就是最小二乘解。 在Python中,我们可以使用numpy库中的`lstsq`函数来求解超定方程组最小二乘解。 首先,我们需要将超定方程组表示为矩阵形式。假设我们有m个方程和n个未知数,我们可以将方程组表示为一个mxn的矩阵A和一个长度为m的向量b。其中,矩阵A的每一行代表一个方程的系数,向量b的每个元素代表方程的右侧常数。 接下来,我们可以使用`numpy.linalg.lstsq`函数来求解最小二乘解。这个函数接受两个参数:矩阵A和向量b。它返回一个包含四个元素的元组:最小二乘解x、残差平方和、矩阵A的秩以及矩阵A中行的数量。我们可以通过元组的第一个元素获取最小二乘解。 下面是一个示例代码: ``` import numpy as np # 定义超定方程组的矩阵A和向量b A = np.array([[1, 2], [3, 4], [5, 6]]) b = np.array([7, 8, 9]) # 求解最小二乘解 x, residuals, rank, s = np.linalg.lstsq(A, b) print("最小二乘解:", x) ``` 在这个示例中,我们定义了一个3x2的矩阵A和一个长度为3的向量b。然后,使用`np.linalg.lstsq`函数求解最小二乘解并将结果打印输出。 总结一下,通过使用numpy库中的`np.linalg.lstsq`函数,我们可以方便地求解超定方程组最小二乘解。 ### 回答3: 超定方程组是指方程的个数大于未知数的个数,此时方程组一般没有精确解。最小二乘解是通过最小化误差平方和来近似解超定方程组。 在Python中,求解超定方程组最小二乘解可以使用numpy库中的lstsq函数。首先,需要将超定方程组表示为矩阵形式,其中方程组的系数构成一个矩阵A,方程组的等号右边构成一个向量b。 具体过程如下: 1. 导入numpy库。 ```python import numpy as np ``` 2. 定义超定方程组的系数矩阵A和等号右边的向量b。 ```python A = np.array([[1, 2], [3, 4], [5, 6]]) # 系数矩阵 b = np.array([7, 8, 9]) # 等号右边的向量 ``` 3. 使用lstsq函数求解最小二乘解。 ```python x, residuals, rank, singular_values = np.linalg.lstsq(A, b, rcond=None) ``` 其中,x为最小二乘解向量,residuals为残差平方和,rank为矩阵A的秩,singular_values为矩阵A的奇异值。 4. 输出最小二乘解。 ```python print("最小二乘解为:", x) ``` 整个过程的完整代码如下所示: ```python import numpy as np A = np.array([[1, 2], [3, 4], [5, 6]]) # 系数矩阵 b = np.array([7, 8, 9]) # 等号右边的向量 x, residuals, rank, singular_values = np.linalg.lstsq(A, b, rcond=None) print("最小二乘解为:", x) ``` 以上是使用Python求解超定方程组最小二乘解的方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值