【负荷预测】基于CNN-GRU-Attention的负荷预测研究(Python代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、模型原理

1. 卷积神经网络(CNN)

2. 门控循环单元(GRU)

3. 注意力机制(Attention)

三、模型结构

四、数据预处理

五、模型训练与评估

六、应用与展望

七、结论

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-GRU-Attention的负荷预测研究文档可以从以下几个方面进行概述:

一、引言

随着电力系统规模的不断扩大,对电力负荷预测的需求也日益增长。准确的负荷预测对于电力系统规划、调度、运行和控制至关重要。传统负荷预测方法如自回归移动平均模型(ARMA)和指数平滑模型等,往往难以捕捉到时间序列数据中的复杂非线性关系,尤其是当存在大量影响因素时。近年来,深度学习技术的突破性进展为负荷预测提供了新的思路。其中,基于CNN-GRU-Attention的负荷预测方法结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)的优势,能够更有效地捕捉时间序列数据的空间和时间特征,提高负荷预测的精度和鲁棒性。

二、模型原理

1. 卷积神经网络(CNN)

CNN主要用于提取输入数据的局部特征。在负荷预测中,CNN能够从时间序列数据中提取不同时间窗口的特征,并将其整合到更高层的特征图中。这一步骤有助于增强输入数据与输出数据间的相关性,为后续处理提供更有价值的信息。

2. 门控循环单元(GRU)

GRU是一种特殊的循环神经网络(RNN),用于学习时间序列数据的长程依赖关系。与标准的RNN相比,GRU通过引入门控机制(如更新门和重置门)来减少梯度消失问题,从而更有效地捕捉时间序列中的长期记忆。在负荷预测中,GRU能够利用历史负荷数据中的时间依赖性,提高预测的准确性。

3. 注意力机制(Attention)

注意力机制用于识别时间序列数据中的重要信息。在负荷预测中,不同时间步的负荷数据对预测结果的贡献度是不同的。Attention机制能够根据当前时间步的输入,自动学习不同时间步的权重,从而突出重要的信息,抑制无关信息。这一步骤有助于进一步提高预测的精度和解释性。

三、模型结构

基于CNN-GRU-Attention的负荷预测模型主要包括以下几个部分:

  1. CNN层:用于提取输入数据的局部特征。
  2. GRU层:用于学习时间序列数据的长程依赖关系。
  3. Attention层:用于识别时间序列数据中的重要信息,并对CNN和GRU提取的特征进行加权融合。
  4. 全连接层:用于将提取到的特征映射到预测结果。

四、数据预处理

数据预处理是负荷预测模型的关键环节,主要包括以下步骤:

  1. 数据清洗:剔除异常数据和缺失数据。
  2. 特征工程:根据实际情况提取影响负荷的因素,如气温、湿度、节假日等。
  3. 数据归一化:将数据范围缩放到0到1之间,以提高模型的训练效率。
  4. 数据划分:将数据集划分为训练集、验证集和测试集,用于模型训练、参数调整和模型评估。

五、模型训练与评估

模型训练采用反向传播算法,通过最小化损失函数(如均方误差MSE)来优化模型参数。训练过程中,可以使用验证集来监控模型的性能,避免过拟合。训练完成后,使用测试集对模型进行评估,计算预测误差、准确率等指标,以验证模型的预测能力。

六、应用与展望

基于CNN-GRU-Attention的负荷预测模型在电力系统规划、调度、运行和控制等领域具有广泛的应用前景。随着深度学习技术的不断发展,该模型还可以进一步引入更复杂的注意力机制(如自注意力机制和多头注意力机制)和其他深度学习模型(如LSTM),以进一步提升预测精度和性能。同时,考虑更多影响因素(如天气预报、社会经济活动等)也将有助于提高模型的预测准确性。

七、结论

基于CNN-GRU-Attention的负荷预测方法充分利用了卷积、循环和注意力的特性,能够有效地捕捉时间序列数据的空间和时间特征,提高负荷预测的精度和鲁棒性。该方法为电力系统负荷预测提供了新的思路和技术支持,具有重要的理论意义和实际应用价值。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值