全新的CRISPR技术——CRISPR-TO

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

斯坦福大学的研究团队日前开发出一种全新的CRISPR技术——CRISPR-TO,能够将RNA精确输送至神经元中的特定受损区域,进而启动修复与再生机制。这项突破性的研究被称为“空间RNA医学(spatial RNA medicine)”的起点,有望为如肌萎缩侧索硬化症(ALS)、脊髓损伤及多种神经退行性疾病带来更安全、有效的治疗新方向。

CRISPR-TO:精准的“分子邮差”

与传统通过CRISPR-Cas9编辑DNA不同,研究人员使用的是CRISPR-Cas13系统,其不修改DNA,而是靶向RNA分子。研究团队将Cas13改造成类似邮差的角色,并为其配备“分子邮编”(molecular zip codes),使其能够根据细胞内特定地址信息,将RNA运输至精确的亚细胞位置。

“Cas13原本像剪刀,我们则将其重新设计为递送员,”斯坦福大学生物工程副教授、研究资深作者Stanley Qi指出。“我们现在可以指示它将RNA从一个位置带到另一个特定位置。”

实验成果:受损神经元生长显著提升

研究人员将该技术应用于小鼠脑部神经元体外培养实验中,发现CRISPR-TO能将RNA精准地运输至神经突末端——即神经元用于形成突触并与其他神经元连接的区域。在24小时内,一些RNA分子使神经突的增长提升了多达50%

该成果揭示了RNA在细胞中空间定位的重要性,尤其在处理长达一米以上的神经元时,RNA运输的准确性决定了修复能否成功。

更安全、更高效的RNA疗法

研究者强调,CRISPR-TO技术无需对细胞基因组进行编辑,而是利用细胞内原有的RNA分子,改变其分布位置,避免了传统基因编辑带来的不可逆风险。

该团队正在扩展这项技术,以在小鼠大脑及人类神经元中测试更多RNA分子的治疗潜力。研究负责人表示,未来还可结合外源RNA药物,通过CRISPR-TO实现精准定位与递送控制,显著提高疗效并减少副作用。

“仅仅让一个RNA分子进入细胞并不够,我们需要它在正确的时间到达正确的位置,”Qi指出。“凭借我们这项可编程的精准技术,理论上可将任意RNA靶向至任意细胞中的特定部位。”

开启“空间RNA医学”新时代

这项由美国国家卫生研究院(NIH)和国家科学基金会等多家机构资助的研究,为“空间RNA医学”建立了基础。未来,研究人员希望这一技术能够应用于治疗脊髓损伤、神经退行性疾病,甚至用于再生医学与精准神经修复。

相关研究已于2025年5月21日发表于《Nature》期刊,由斯坦福大学Chloe Dionisio提供新闻发布。研究显示,在细胞层面对RNA的空间控制能力,将为神经系统疾病的治疗开辟全新方向,极有可能成为未来RNA疗法的核心机制之一。

### 2025年AI大模型的应用场景 随着技术的进步,预计到2025年,AI大模型将在多个领域展现出更广泛的应用价值。这些模型不仅能处理复杂的任务,还能在特定行业中发挥重要作用。 #### 自然语言处理(NLP) NLP将继续作为AI大模型的重要应用方向之一。届时,基于Transformer架构的大规模预训练模型将进一步优化对话系统的性能,在客服机器人、智能翻译等方面取得显著成果[^1]。例如,企业级客户服务平台将集成先进的多轮对话管理能力,使得机器人的应答更加流畅自然;跨国公司内部沟通工具也将受益于高质量的语言转换服务。 ```python import transformers as trfms tokenizer = trfms.AutoTokenizer.from_pretrained('bert-base-multilingual-cased') model = trfms.BertForSequenceClassification.from_pretrained('bert-base-multilingual-cased') def translate_text(text, target_language='en'): inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=512, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt' ) outputs = model.generate(**inputs) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text ``` #### 计算机视觉(CV) CV方面,图像分类、目标检测以及语义分割等功能会变得更加精准高效。特别是对于医疗影像诊断而言,借助高性能GPU集群加速推理过程,医生可以获得更为可靠的辅助判断依据。此外,零售业利用无人商店内的摄像头监控系统自动识别人脸并完成支付操作也逐渐普及开来。 ```python from ultralytics import YOLO yolo_model = YOLO('yolov8n.pt') results = yolo_model.predict(source='path_to_image_or_video', save=True) for r in results: boxes = r.boxes.xyxy.cpu().numpy() confidences = r.boxes.conf.cpu().numpy() class_ids = r.boxes.cls.cpu().numpy() print(f'Detected objects with confidence scores:\n{list(zip(class_ids, confidences))}') ``` #### 生物医药研究 生物医药行业同样期待着来自AI的力量。药物发现过程中涉及大量化合物筛选工作量巨大且耗时长久,而采用深度学习算法可以帮助科学家们快速定位潜在有效成分。基因编辑CRISPR-Cas9技术配合上预测蛋白质结构的AlphaFold2等工具,则有望开启个性化治疗新时代。 ```bash conda create --name bioai python=3.9 conda activate bioai pip install biopython torch geometric deepchem alphafold ``` ### 实际部署案例 在中国市场环境下,不同地区政府积极出台政策措施促进本地化创新与发展: - **北京**:聚焦基础理论探索和技术标准制定; - **上海**:致力于构建具有全球影响力的产业生态体系; - **深圳**:鼓励开放共享平台建设,降低中小企业进入门槛; - **安徽**:通过税收优惠等方式吸引更多优质项目落地生根; - **成都**:针对金融、教育等行业特点定制专属解决方案; - **杭州**:扶持阿里巴巴达摩院为代表的一批领军型企业开展核心技术突破。 上述举措共同促进了全国范围内AI大模型项目的蓬勃发展,并形成了良好的示范效应[^2]。 ### 最新进展 近年来,研究人员不断尝试改进现有框架以适应更多样化的应用场景需求。一方面,轻量化版本相继问世,旨在解决移动端设备资源受限的问题;另一方面,“零样本/少样本”学习机制受到广泛关注——即无需大规模标注数据集即可实现良好泛化效果的新范式正在形成之中。与此同时,跨模态融合也成为热点话题,比如结合文本描述自动生成逼真图片的技术已经取得了阶段性成就[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值