下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容。栏目后续章节的文章将深入概括R语言在临床研究和新药创新领域的应用,填补了国内R教材中尚未广泛覆盖的部分内容。2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客文章浏览阅读817次。R语言自带了许多内部数据集,这些数据集不仅为初学者提供了丰富的练习资源,还为研究人员和数据分析师提供了方便的数据测试和模型验证工具。在这篇文章中,我们将详细探讨如何读取和使用数据集。_r语言 复制数据集https://blog.csdn.net/2301_79425796/article/details/140606583?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22140606583%22%2C%22source%22%3A%222301_79425796%22%7D
欢迎订阅我们专栏
.......前面部分请点击上面链接看原文(原文5873字)
三、RStudio的界面来读取数据
RStudio是一个功能强大的R语言开发环境,其简洁直观的界面使得数据科学家能够更加高效地进行数据分析和可视化。在RStudio中,读取外部数据可以通过多种方式进行,其中“File”菜单中的“Import Dataset”功能尤为方便。它的支持多种文件格式,包括 CSV、Excel、SPSS、Stata 和 SAS 文件。下面我们分别介绍如何导入这些格式的数据,如下图。
如导入 CSV 文件:1)选择 CSV 文件导入选项:点击菜单栏中的 “Environment” 面板,然后选择 “Import Dataset” > “From Text (readr)...”。
2)选择文件:在弹出的对话框中,点击 “Browse” 按钮,选择需要导入的 CSV 文件。
3)设置参数:可以在对话框中设置分隔符、列名、编码等参数。默认情况下,RStudio 会自动检测文件的分隔符和编码。如我们要导入数据集计算机某个位置的 frmgham.csv 文件,如下图。
- Name: 这是将在 R 中分配给数据对象的名称。
- Input File: 显示你要导入的文件数据的大概情况。
- Encoding: 指定文件的字符编码。默认值是“自动”。
- Heading: 指定文件的第一行是否包含变量名。你可以选择“是”或“否”。
- Row names: 指定是否使用文件中的某一列作为行名。你可以选择“自动”或从下拉菜单中选择一列。
- Separator: 指定分隔文件中每列值的字符。默认值是逗号 (",")。
- Decimal: 指定文件中表示小数点的字符。默认值是句号 (".")。
- Quote: 指定文件中用于括起字符串的字符。默认值是双引号 (""")。
- Comment: 指定文件中标识评论行的字符。以此字符开头的行将被忽略。
- na.strings: 指定一个字符向量,将被解释为数据中的缺失值 (NA)。
- Strings as factors: 指定是否将字符串变量转换为因子。因子是可以取有限个值的分类变量。
4)导入预览:点击 “Import” 按钮,数据将被读取并存储在一个 data frame 中。接着会自动出现文件预览框,进一步方便大家查阅数据的整体情况,如下图。
四、直接复制粘贴的datapasta扩展包
传统的数据导入方法虽然可靠,但也可能在初学者中引发一些错误。特别是在处理来自网页、Excel或其他来源的数据时,格式问题、数据清洗和转换常常成为挑战。为了解决这些问题,R的datapasta
扩展包提供了一种高效、直观的数据导入方式,特别是在需要从各种来源直接粘贴数据时,而不需要进行复杂的数据处理或转换。
要使用datapasta
扩展包,首先需要安装和加载它。可以通过以下代码安装:
install.packages("datapasta")
library(datapasta)
datapasta
的核心功能是允许用户将数据直接从剪贴板粘贴到RStudio中。这一过程非常简单,以下是具体的操作步骤:
从Excel或者CSV等文件中直接复制数据
复制数据:在Excel中选择要复制的数据范围,按下Ctrl+C(
在Mac上,Command+C)
将其复制到剪贴板。
RStudio界面功能直接粘贴
进入RStudio:打开RStudio,确保datapasta
包已经加载。
~~~~~~~~~~
在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章5节:用R绘制平行坐标图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
第10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客