文章目录
前言
卷积核(Convolution Kernel)是卷积神经网络(CNN)中的核心组件,用于**提取图像或特征图的局部特征。**常见的卷积核根据功能可分为以下几类:
1. 平滑(模糊)卷积核
用于图像去噪或模糊处理,通过加权平均减少高频噪声:
1.1 均值滤波(3×3 示例)
[1/9, 1/9, 1/9]
[1/9, 1/9, 1/9]
[1/9, 1/9, 1/9]
1.2 高斯滤波(3×3 示例,σ=1)
[1/16, 2/16, 1/16]
[2/16, 4/16, 2/16]
[1/16, 2/16, 1/16]
2. 锐化卷积核
增强图像边缘和细节,突出高频信息
2.1 拉普拉斯锐化(3×3)
[ 0, -1, 0]
[-1, 5, -1]
[ 0, -1, 0]
2.2 非归一化锐化
[ 0,