大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。
丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。
技术的意义在于解决问题
01—大模型技术学习的理论,实践与应用
学习大模型技术需要系统性的理论基础,实践技能以及最新的研究进展和应用场景。以下是一个大模型学习进阶路线,涵盖了理论,技术和应用等方面。
理论基础
大模型学习需要有一定的理论基础,特别是数学,机器学习,自然语言处理等方面。
数学与统计学
- 线性代数:矩阵运算,特征值,奇异值分解等
- 概率论和统计学:随机变量,概率分布,贝叶斯定理**等
- 微积分:偏导数,梯度下降,最优化等
机器学习基础
- 监督学习:回归,分类,支持向量机等
- 无监督学习:聚类,降维,主成分分析等
- 深度学习基础:神经网络,反向传播,激活函数等
自然语言处理
语言模型:n-gram,Word2Vec,BERT,GPT等
序列模型:RNN,LSTM,Transformer等
大模型的核心
- 预训练模型:理解什么是预训练及其在大模型中的应用
- 自监督学习:掌握自监督学习的概念及其在预训练中的应用
- 注意力机制:深入理解注意力机制及其在Transformer架构中的作用
- 多模态学习:了解如何处理文本,图像,音视频等多模态数据
实践技能
编程语言
Python:python作为目前大模型主要的开发语言,熟悉python基础,Numpy,Pandas数据处理工具
深度学习框架
TensorFlow/PyTorch: 学习如何使用这些框架构建和训练深度学习模型
模型实现
从头实现:动手实现简单的神经网络,Transformer模型,理解模型结构和训练流程
迁移学习:使用预训练模型并进行微调,适应特定任务
大规模训练
分布式训练:学习如何在多GPU或多节点环境下进行模型训练
优化技术:理解学习率调度,梯度剪裁,模型压缩等技术
项目与实战
- 构建项目:设计和实现一个完整的大模型项目,从数据准备到模型部署
- 开源贡献:参与开源深度学习框架或大模型相关项目的开发,积累实战经验
- 挑战赛:参加如Kaggle等平台的AI挑战赛,检验自己的技术水平
前沿技术
- 生成式模型:深度研究生成式模型如GPT,DALL-E,Stable-Diffusion等
- 多模态大模型**:学习如果构建和训练多模态模型,处理图像,文本,音频等多种数据
- 自监督学习:研究自监督学习的最新进展及其在大模型中的应用
- 增强学习:了解增强学习在大模型中的应用,如RLHF**(通过人类反馈进行强化学习)
实际应用
应用场景:探索大模型在自然语言处理,计算机视觉,语音识别等领域的应用
案例研究:分析ChatGPT**,BERT,DALL-E等实际案例,理解大模型的应用细节
开源项目:参与开源项目或复现学术论文中的模型,提升实战能力
持续学习
大模型技术处于一个飞速发展的过程,今天合适的正确理论,或许明天就不是那么正确;今天的好方法或许明天就会有更合适的解决方案,因此持续学习是一个必不可少的技能。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓