大模型应用的最佳实践Chains, RouterChain、Transform Chain使用示例

各种chain的介绍

  • 串联式编排调用链:SequentialChain

    • 流水线 胶水代码逻辑处理
    • 具备编排逻辑 串行 one by one的调用
    • 上一个chain的输出 作为 下一个chain的输入
  • 超长文本的转换 Transform Chain

    • pdf文件处理
    • 提供了套壳的能力 将python处理字符串的能力 套用进来 完成数据的格式化处理
  • 实现条件判断的路由链:RouterChain

    • 复杂逻辑 条件判断
    • 组合routerchain 目标链 通过条件判断 选择对应的目标链进行调用

Transform Chain: 实现快捷处理超长文本

设计理念 是提供一个框架(壳子) 将处理文本的函数 套进来使用 image.png

代码示例

ini
复制代码
from langchain.chains import TransformChain, LLMChain
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplate
import os

api_key = 'sk-xxx'
os.environ["OPENAI_API_KEY"] = api_key

serp_api = 'xxx'
os.environ["SERPAPI_API_KEY"] = serp_api

with open("the_old_man_and_the_sea.txt") as f:
    novel_text = f.read()


# 定义一个转换函数,输入是一个字典,输出也是一个字典。
def transform_func(inputs: dict) -> dict:
    # 从输入字典中获取"text"键对应的文本。
    text = inputs["raw_text"]
    # 使用split方法将文本按照"\n\n"分隔为多个段落,并只取前三个,然后再使用"\n\n"将其连接起来。
    shortened_text = "\n\n".join(text.split("\n\n")[:3])
    # 返回裁剪后的文本,用"output_text"作为键。
    return {"output_text": shortened_text}


def main():
    # 使用上述转换函数创建一个TransformChain对象。
    # 定义输入变量为["text"],输出变量为["output_text"],并指定转换函数为transform_func。
    # 提供一个壳子 将函数处理能力 逃进来
    transform_chain = TransformChain(
        input_variables=["raw_text"], output_variables=["output_text"], transform=transform_func
    )

    # 通过chain转换后的文本数据 包括两个key raw_text输入结果 output_text输出结果
    transformed_novel = transform_chain(novel_text)
    print(transformed_novel)

    template = """总结下面文本:
    {output_text}
    总结:"""
    prompt = PromptTemplate(input_variables=["output_text"], template=template)
    llm_chain = LLMChain(llm=OpenAI(), prompt=prompt, verbose=True)

    few_output_text = transformed_novel['output_text'][:1000]

    result = llm_chain(few_output_text)
    print(result)


if __name__ == "__main__":
    main()

输出结果

image.png

总结:

核心就是提供 串接 套壳的能力 将处理文本函数套壳进来 然后将原始数据局进行处理

Router Chain: 实现条件判断的大模型调用

构建可定制的链路系统,用户可以提供不同的输入提示,并根据这些提示获取适当的响应。

主要逻辑:从prompt_infos创建多个LLMChain对象,并将它们保存在一个字典中,然后创建一个默认的ConversationChain,最后创建一个带有路由功能的MultiPromptChain

MultiPromptChain 是 router chain和目标链destnation chain构成

image.png

python
复制代码
from langchain.chains.router import MultiPromptChain
from langchain_openai import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate

import os

api_key = 'sk-xxx'
os.environ["OPENAI_API_KEY"] = api_key

serp_api = 'xxx'
os.environ["SERPAPI_API_KEY"] = serp_api


def get_prompt_infos():
    """
    提示语
    :return:
    """
    physics_template = """你是一位非常聪明的物理教授。
    你擅长以简洁易懂的方式回答关于物理的问题。
    当你不知道某个问题的答案时,你会坦诚承认。
    
    这是一个问题:
    {input}"""

    math_template = """你是一位很棒的数学家。你擅长回答数学问题。
    之所以如此出色,是因为你能够将难题分解成各个组成部分,
    先回答这些组成部分,然后再将它们整合起来回答更广泛的问题。
    
    这是一个问题:
    {input}"""

    prompt_infos = [
        {
            "name": "物理",
            "description": "适用于回答物理问题",
            "prompt_template": physics_template,
        },
        {
            "name": "数学",
            "description": "适用于回答数学问题",
            "prompt_template": math_template,
        },
    ]

    return prompt_infos


llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
prompt_infos = get_prompt_infos()


def get_destination_chains():
    """
    动态构建的目标链
    存放根据prompt_infos生成的LLMChain。
    :return:
    """
    # 创建一个空的目标链字典,用于存放根据prompt_infos生成的LLMChain。
    destination_chains = {}

    # 遍历prompt_infos列表,为每个信息创建一个LLMChain。
    for p_info in prompt_infos:
        name = p_info["name"]  # 提取名称
        prompt_template = p_info["prompt_template"]  # 提取模板
        # 创建PromptTemplate对象
        prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
        # 使用上述模板和llm对象创建LLMChain对象
        chain = LLMChain(llm=llm, prompt=prompt)
        # 将新创建的chain对象添加到destination_chains字典中
        destination_chains[name] = chain

    return destination_chains


from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE

# 从prompt_infos中提取目标信息并将其转化为字符串列表 ['物理: 适用于回答物理问题', '数学: 适用于回答数学问题']
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
# 使用join方法将列表转化为字符串,每个元素之间用换行符分隔
destinations_str = "\n".join(destinations)

# 根据MULTI_PROMPT_ROUTER_TEMPLATE格式化字符串和destinations_str创建路由模板
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)

# 创建路由的PromptTemplate
router_prompt = PromptTemplate(
    template=router_template,
    input_variables=["input"],
    output_parser=RouterOutputParser(),
)

# 使用上述路由模板和llm对象创建LLMRouterChain对象
router_chain = LLMRouterChain.from_llm(llm, router_prompt)

# 创建一个默认的ConversationChain
default_chain = ConversationChain(llm=llm, output_key="text")

# 目标链
destination_chains = get_destination_chains()

# 创建MultiPromptChain对象,其中包含了路由链,目标链和默认链。
chain = MultiPromptChain(
    router_chain=router_chain,
    destination_chains=destination_chains,
    default_chain=default_chain,
    verbose=True,
)

print(chain.run("万有引力定律是什么?"))

输出结果 image.png

MULTI_PROMPT_ROUTER_TEMPLATE的具体实现

image.png

组装完成的提示模版 image.png

示例 整合SequentialChain、RouterChain、Transform Chain

image.png

这段代码构建了一个可定制的链路系统,用户可以提供不同的输入提示,并根据这些提示获取适当的响应。

主要逻辑:从prompt_infos创建多个LLMChain对象,并将它们保存在一个字典中,然后创建一个默认的ConversationChain,最后创建一个带有路由功能的MultiPromptChain

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 28
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
马尔科夫链(Markov chains)是一种数学模型,它描述了在给定过去状态的情况下,未来状态的概率分布只与当前状态有关,与过去状态无关。马尔科夫链的本质在于其具有马尔科夫性质,即无记忆性。 在马尔科夫链中,系统存在一组状态,每个状态之间存在概率转移的关系。通过转移概率矩阵(transition matrix),我们可以描述状态之间的概率转移。该矩阵的行数和列数等于系统状态的数量,矩阵中的元素表示从一个状态转移到另一个状态的概率。 通过马尔科夫链,我们可以研究随机过程中状态的演化。在随机游走、物理学、生态学、经济学等领域,马尔科夫链都有着广泛应用。例如,在随机游走中,马尔科夫链可以帮助我们分析某个随机漫步者在不同位置之间的概率转移;在经济学中,马尔科夫链可以用于描述不同经济周期之间的转移。 此外,马尔科夫链还有一些重要的性质和概念,如吸收概率、平稳分布、遍历性等。吸收概率是指从某个状态开始,最终进入某个特定状态的概率。平稳分布表示在长时间内,系统状态的概率分布保持不变。而遍历性用于描述从任意状态开始,最终可以访问到所有其他状态的性质。 总之,马尔科夫链是一种重要的数学模型,用于研究随机过程中状态的演化以及系统的稳定性。它的应用领域广泛,并且在概率论、统计学和计算机科学等领域中都有重要的应用

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值