基于 MaxKB+Ollama+Llama3 手把手从0-1构建本地私有化知识库

前言

随着人工智能技术的快速发展-大型语言模型(LLM),如 OpenAI 的 GPT 系列,已成为众多企业和个人关注的焦点,而 Ollama 作为一款开源的大型语言模型服务工具,正逐渐受到开发者和研究人员的关注,本文将探讨基于 MaxKB+Ollama +Llama3 如何快速零成本构建本地私有化 AI 知识库!

安装 Ollama

Ollama 作为一款开源的大型语言模型服务工具,凭借其开源性、大规模和可定制性等特点,在人工智能领域展现出了巨大的潜力。通过高效性、灵活性和社区支持等优势,Ollama 在NLP、机器翻译和文本生成等领域得到了广泛应用。

下载&安装 Ollama 对应版本,根据操作系统任选其一即可。

运行 Llama3

输入命令,运行:To run and chat with Llama3.

ollama run llama3

上述命令,默认下载的就是:

安装 MaxKB

MaxKB 是一款基于 LLM(Large Language Model)大语言模型-知识库问答系统(Max Knowledge Base)

在 MaxKB 中接入 Ollama 的 LLM 模型,可以快速部署本地知识库问答系统~

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data 1panel/maxkb

拉取镜像,待其镜像下载完成后,

我们可以查看其镜像相关信息,

界面可视化-启/停构建的镜像服务。

首先,打开 MaxKB 界面 UI:

http://127.0.0.1:8080/ui/login#/

初始账号: admin``初始密码: MaxKB@123..

登录成功之后,更新密码:

然后,在左侧导航菜单栏,打开系统设置,进入模型设置,添加我们前面下载好的 Ollama+Llama3:

模型设置,可根据实际场景需要添加:

当模型配置完成后,则构建我们的专属知识库:

这里,我们可以设置知识内容分段的类型:

这样,我们的译点架构-专属知识库就创建好了。

接下来,我们就可以根据译点架构专属知识库,构建我们的译点 AI 智能小助手。

补充完善我们的应用信息,进行开场白及多轮对话等功能设置,问题优化等。

至此,我们的 AI 大模型,私有知识库,专属应用就都配置完成。这样,一个本地私有化知识库应用就完成了搭建!与此同时,我们就拥有了一个智能且私有化的 AI 知识库,节省了 baidu 或 google 一下的时间,大大提高了我们日常工作中的效率!

其实,这与早期所接触研发的知识库(对信息的归纳、概括与总结->数据客观存在-信息加工)领域相比来看,AI 在语义、语境搜索,上下文联想,召回率,相关性,准确度等各方面丝毫不逊色,尤其是在垂类的知识领域,AI 检索使得回答更精准(前提:提示词给得恰到好处,让机器成为你的好帮手),交互体验的效果也更受用户青睐!

当然,也需要持续关注应用的运行情况,并根据用户反馈和市场需求进行迭代和更新,这包括优化用户体验、增加新功能,安全隐私等。由于时间等问题,后续会抽空专门整理一些智能 AI 助手回答效果及调优的文章(根据后台童鞋粉丝的需求呼吁度)><

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在要帮用户找适合知识库管理的本地部署机器学习或NLP模型,还有相关的下载和部署教程。首先,我得先理解用户的需求。他们想要在本地部署,可能是出于数据安全和隐私的考虑,对吧?比如企业内部的敏感数据不能上传到云端,所以需要本地化的解决方案。 接下来,我需要回忆一下常见的本地部署模型。比如BERT,这是一个经典的NLP模型,适合文本理解任务,比如问答、分类。然后RoBERTa,是BERT的改进版,可能效果更好。ALBERT在参数效率上做了优化,适合资源有限的情况。还有ELECTRA,训练方式不同,可能更高效。这些模型都是开源的,可以在Hugging Face上找到,对吧? 然后,知识库管理可能涉及检索和生成,所以RAG(检索增强生成)技术可能相关。RAG结合了检索模型和生成模型,比如用BERT做检索,用GPT-2或BART生成答案。不过用户提到要本地部署,所以生成模型可能需要较小的版本,比如GPT-2 Medium或者DistilGPT-2,这些模型参数量相对小一些,适合本地资源。 另外,部署框架方面,Hugging Face的Transformers库是必须的,还有ONNX Runtime可以加速推理。如果需要服务化,可以用FastAPI或者Flask来构建API。Docker容器化部署也是个好主意,方便环境管理和扩展。 教程方面,Hugging Face的官方文档应该是最权威的,里面有很多示例代码。然后,像Colab或者Jupyter的实战教程可能对用户有帮助,特别是步骤详细的指南。社区资源比如GitHub项目、博客文章,特别是那些手把手教部署RAG系统的,可能非常实用。 用户提供的引用里提到了RAG和本地部署,比如引用[1]和[3]都讨论了私有知识库本地部署的重要性,还有引用[2]和[4]提到了一些学习资料和实战案例。所以需要结合这些信息,确保推荐的模型和教程符合企业的实际需求,比如数据隐私和定制化。 可能还需要考虑模型的大小和硬件要求。比如,BERT-base虽然效果不错,但如果在资源有限的服务器上运行,可能需要更轻量级的模型,比如DistilBERT或者ALBERT。同时,微调这些模型可能需要一定的计算资源,用户是否有GPU支持?如果只有CPU,可能需要推荐更高效的模型或者量化版本。 另外,部署步骤可能会涉及环境配置、依赖安装、模型下载、编写推理代码、测试API等。需要确保教程详细,避免用户遇到常见的坑,比如版本兼容性问题,或者缺少某些依赖库。 最后,用户可能需要评估不同模型的性能,比如准确率、推理速度、内存占用等,根据他们的具体场景选择合适的模型。例如,如果知识库需要处理大量实时查询,推理速度就很重要;如果是离线处理,可能更关注准确性。 总结一下,我需要列出几个适合的模型,每个模型的简介、适用场景,然后给出下载和部署的步骤,参考相关的教程和文档,并附上相关的问题供用户进一步探索。</think>### 适用于知识库管理的本地化模型与部署教程 #### 一、适用模型及特点 1. **BERT系列** - **简介**: BERT(Bidirectional Encoder Representations from Transformers)是最经典的预训练语言模型,适用于文本理解、问答、分类等任务。 - **适用场景**: 知识库的语义搜索、实体识别、问答系统[^1]。 - **推荐版本**: `bert-base-uncased`、`bert-large-uncased`(Hugging Face平台提供)。 2. **RoBERTa/ALBERT/ELECTRA** - **改进点**: RoBERTa优化了训练策略,ALBERT通过参数共享降低资源占用,ELECTRA通过生成器-判别器架构提升效率[^3]。 - **适用场景**: 需要轻量化或高效推理的场景。 3. **GPT-2/GPT-Neo** - **简介**: 生成式预训练模型,适合文本生成任务。 - **适用场景**: 知识库的自动摘要、问答生成(需配合检索增强技术RAG)[^1]。 - **推荐版本**: `gpt2-medium`、`EleutherAI/gpt-neo-1.3B`。 4. **Sentence-Transformers** - **简介**: 基于BERT的句子嵌入模型,用于文本相似度计算。 - **适用场景**: 知识库的语义检索、聚类分析。 - **推荐模型**: `all-MiniLM-L6-v2`(轻量级,适合本地部署)。 --- #### 二、部署流程与工具 ##### 1. 环境准备 - **框架依赖**: ```bash pip install transformers torch sentence-transformers flask ``` - **硬件要求**: - CPU/GPU均可运行(BERT-base需约1.5GB内存,GPT-2需约2GB)。 ##### 2. 模型下载与加载(以BERT为例) ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = BertModel.from_pretrained("bert-base-uncased") ``` ##### 3. 本地API部署(使用Flask) ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route("/encode", methods=["POST"]) def encode_text(): text = request.json["text"] inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) return jsonify({"embedding": outputs.last_hidden_state.tolist()}) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) ``` ##### 4. 结合RAG构建知识库[^1] 1. 使用`langchain`框架加载本地文档。 2. 通过Sentence-Transformers生成向量索引。 3. 将检索结果输入生成模型(如GPT-2)生成答案。 --- #### 三、推荐教程与资源 1. **Hugging Face官方文档** - 模型下载与微调: [https://huggingface.co/docs](https://huggingface.co/docs) - 实战示例: [Text Classification with BERT](https://huggingface.co/docs/transformers/tasks/sequence_classification) 2. **本地RAG系统搭建** - 参考GitHub项目: [llama-index](https://github.com/run-llama/llama_index) - 步骤详解: 数据预处理→向量化→检索→生成(参考引用[3])。 3. **性能优化** - 使用ONNX加速推理: ```python from transformers.convert_graph_to_onnx import convert convert(framework="pt", model="bert-base-uncased", output="bert.onnx") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值