前言
随着人工智能技术的快速发展-大型语言模型(LLM),如 OpenAI 的 GPT 系列,已成为众多企业和个人关注的焦点,而 Ollama 作为一款开源的大型语言模型服务工具,正逐渐受到开发者和研究人员的关注,本文将探讨基于 MaxKB+Ollama +Llama3 如何快速零成本构建本地私有化 AI 知识库!
安装 Ollama
Ollama 作为一款开源的大型语言模型服务工具,凭借其开源性、大规模和可定制性等特点,在人工智能领域展现出了巨大的潜力。通过高效性、灵活性和社区支持等优势,Ollama 在NLP、机器翻译和文本生成等领域得到了广泛应用。
下载&安装 Ollama 对应版本,根据操作系统任选其一即可。
运行 Llama3
输入命令,运行:To run and chat with Llama3.
ollama run llama3
上述命令,默认下载的就是:
安装 MaxKB
MaxKB 是一款基于 LLM(Large Language Model)大语言模型-知识库问答系统(Max Knowledge Base)
在 MaxKB 中接入 Ollama 的 LLM 模型,可以快速部署本地知识库问答系统~
docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data 1panel/maxkb
拉取镜像,待其镜像下载完成后,
我们可以查看其镜像相关信息,
界面可视化-启/停构建的镜像服务。
首先,打开 MaxKB 界面 UI:
http://127.0.0.1:8080/ui/login#/
初始账号: admin``初始密码: MaxKB@123..
登录成功之后,更新密码:
然后,在左侧导航菜单栏,打开系统设置,进入模型设置,添加我们前面下载好的 Ollama+Llama3:
模型设置,可根据实际场景需要添加:
当模型配置完成后,则构建我们的专属知识库:
这里,我们可以设置知识内容分段的类型:
这样,我们的译点架构-专属知识库就创建好了。
接下来,我们就可以根据译点架构专属知识库,构建我们的译点 AI 智能小助手。
补充完善我们的应用信息,进行开场白及多轮对话等功能设置,问题优化等。
至此,我们的 AI 大模型,私有知识库,专属应用就都配置完成。这样,一个本地私有化知识库应用就完成了搭建!与此同时,我们就拥有了一个智能且私有化的 AI 知识库,节省了 baidu 或 google 一下的时间,大大提高了我们日常工作中的效率!
其实,这与早期所接触研发的知识库(对信息的归纳、概括与总结->数据客观存在-信息加工)领域相比来看,AI 在语义、语境搜索,上下文联想,召回率,相关性,准确度等各方面丝毫不逊色,尤其是在垂类的知识领域,AI 检索使得回答更精准(前提:提示词给得恰到好处,让机器成为你的好帮手),交互体验的效果也更受用户青睐!
当然,也需要持续关注应用的运行情况,并根据用户反馈和市场需求进行迭代和更新,这包括优化用户体验、增加新功能,安全隐私等。由于时间等问题,后续会抽空专门整理一些智能 AI 助手回答效果及调优的文章(根据后台童鞋粉丝的需求呼吁度)><
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓