大模型训练故障异构弹性恢复技术

背景介绍

随着大模型技术的发展和其训练规模的不断扩大,集群的故障问题也日益凸显,严重影响模型训练的效率;例如,Meta AI实验室发布的OPT模型,其中OPT-175B[1]的训练时长90天( 900多张GPU),训练期间112次故障,故障恢复时间耗时长,最长一次甚至到80小时;OpenAI GPT-4[2]的训练时长90~100天(2万多张GPU),算力利用率MFU仅32%到36%,而故障恢复涉及的高开销检查点则是低MFU的关键所在。因此,如何快速恢复模型续训提高集群训练的可靠性成为亟待解决的技术难题。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

大模型训练故障恢复整体流程

大模型训练的故障恢复流程的主要步骤包括:

  1. 故障检测:检测系统中各种类型的故障,故障发生后,通知故障决策组件;

  2. 故障决策:收到通知后,针对不同的故障类型决策采取何种恢复机制,通知故障处理组件进行故障处理;

  3. 故障处理:收到故障决策组件的消息后,进行故障处理,如临终状态处理,数据修复等;

  4. 故障恢复:故障节点进程进行原地恢复或者迁移恢复等,正常节点任务需要回滚到指定的训练步骤,主要涉及关键技术有NPU设备和集合通信的状态保存与恢复。

异构弹性恢复关键技术

1) 关键技术一:NPU状态C/R技术

大模型训练的运行状态主要分为两部分,一部分是训练任务相关的,包括大模型, MindSpore, CANN , 这些状态可以通过CRIU[3]恢复;另外一部分与NPU设备相关(包括NPU driver和NPU device)的。虽然用户态的CRIU机制可以恢复进程的状态,但不支持NPU设备相关状态恢复。由此,AMD[5]和Nvidia[6]积极推动各自的GPU驱动里实现状态保存和恢复的能力;微软 Singularity[4]则通过劫持技术,截获CPU与GPU之间的交互,通过一个独立的设备代理组件实现GPU设备状态恢复。

与GPU不同的是,NPU的状态更加复杂,除了NPU Driver状态之外,NPU设备内部还有复杂的管理机制,需要保存与恢复相关状态信息。为此,我们构建了算力状态抽象管理模块,用于跟踪、管理与恢复主机侧到NPU侧发送的命令与算子流,记录命令的生命周期、依赖关系等,并通过重算(例如算子)的方式构建NPU内部状态;同时通过适配Driver,提供Dump和Restore接口,保存和恢复必要的数据。

2) 关键技术二:集合通信免建链

训练中除因硬件或网络故障导致整个训练任务的失败,每一次重新训练需要执行一遍集合通信组建链初始化耗时较长,字节跳动推出的万卡集群训练系统MegaScale[7]的研究表明:2048卡集群中这个过程需要1047s。为了优化这一过程,需要突破集合通信免建链技术,通过保存与恢复网络硬件与软件的状态,在网络拓扑不变的情况下,实现集合通信秒级恢复。

在通信恢复过程中需要重建本端与对端对应的通信资源。重建的通信资源主要包括驱动侧和和NPU设备侧,驱动中资源信息包括共享内存关系,内存信息以及通道信息;NPU设备中的资源状态包括通信的MR、QP以及网卡寄存器等相关信息,统一通过dump和restore功能,进行信息保存和恢复。由于RDMA网卡的内部通信状态的变化,当本地和对端网卡分别处于不同的通信态,我们通过预置通道同步双方的通信状态,从而重新建立通信。值得注意的是,对于迁移恢复的场景,由于IP地址的变化,除了恢复NPU设备的通信状态,还需要同步构建两端主机之间的通信。

原地恢复原型效果

受限于现有的实验室环境,我们通过原地恢复场景实现异构弹性技术的验证。我们使用containerd的容器运行时,由两台ARM服务器(每台服务器配备8张NPU)互联,运行基于Mindspore的大模型训练llama2-7b;具体来说,训练任务在测试机1上的卡0训练任务执行完数个训练步骤后注入模拟故障,然后执行checkpoint保存训练状态,在测试机1的训练任务退出后,执行Restore重新拉起卡0完成训练中断续跑。结果表明,原地恢复从以前的X分钟缩短到1分钟内。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要回答用户关于“多模态大模型知识库构建”的问题。首先,我要理解用户的需求。他们可能想了解如何构建一个能够处理多种数据类型(如文本、图像、音频等)的大型知识库,以及相关的技术挑战和应用场景。 接下来,我应该从定义入手,解释什么是多模态大模型知识库。然后分步骤介绍构建过程,比如数据采集、预处理、特征提取、模型训练、知识融合等。每个步骤需要详细说明,但也要保持简洁,避免过于技术化。 需要注意用户提到的系统级指令,比如数学表达式的格式。虽然这个问题可能不涉及太多数学,但如果提到模型结构或损失函数,需要用正确的LaTeX格式。例如,提到损失函数时,应该写成$L = \sum (y_i - \hat{y}_i)^2$。 然后要考虑用户可能关心的挑战,比如模态对齐、数据异构性、计算资源等。这部分需要结合实际案例或常见问题,让回答更有深度。同时,应用场景部分要具体,比如智能客服、医疗诊断等,帮助用户理解实际价值。 还需要检查结构是否清晰,分点是否明确。可能使用步骤式结构,每个步骤下再分子点。确保语言口语化,避免专业术语堆砌,必要时举例说明。 最后,验证信息准确性,比如模型名称(如CLIP、GPT-4)是否正确,技术方法是否最新。同时确保遵循格式要求,数学表达式正确,没有使用Markdown,段落间有空行。 总结整个思考过程,组织成逻辑连贯的回答,确保覆盖定义、构建步骤、技术挑战和应用场景,同时保持自然的中文表达。</think>多模态大模型知识库构建是指通过整合文本、图像、音频、视频等多种模态数据,训练能够理解并关联跨模态信息的大型模型体系。以下是其核心要点分步说明: --- ### 一、核心目标 实现**跨模态语义对齐**与**知识关联**,例如: - 将“苹果”的文本描述与水果图片、咀嚼音效关联 - 将数学公式$E=mc^2$与核反应示意图、爱因斯坦演讲录音关联 --- ### 二、构建流程(4阶段) #### 1. 多模态数据采集 - **数据源**:互联网公开数据集(如LAION-5B)、专业领域数据库(医疗影像库)、传感器实时采集 - **关键问题**: - 数据清洗:过滤噪声(如错误标注的图片) - 版权合规:遵循CC协议等开源许可 #### 2. 特征表示学习 - **单模态编码**: - 文本:BERT模型生成$h_{text} \in \mathbb{R}^{768}$ - 图像:ViT提取特征$v_{img} = \text{ViT}(I)$ - **跨模态对齐**: 使用对比损失函数: $$L = -\log \frac{e^{s(h_i,v_i)/\tau}}{\sum_{j=1}^N e^{s(h_i,v_j)/\tau}}$$ 其中$s(\cdot)$为相似度计算,$\tau$为温度参数 #### 3. 知识图谱融合 - **结构映射**:将离散特征转换为知识三元组 $$(实体, 关系, 实体) \Rightarrow (\text"量子力学", \text"关联", \text"薛定谔方程")$$ - **嵌入优化**:使用TransE模型学习 $$\|h + r - t\|_2^2 \leq \gamma$$ #### 4. 持续学习机制 - **灾难性遗忘**解决方案: - 弹性权重固化(EWC):约束重要参数更新 $$L_{EWC} = L + \lambda \sum_i F_i(\theta_i - \theta_i^*)^2$$ - 动态内存回放:保留关键样本缓冲区 --- ### 三、技术挑战 1. **模态鸿沟**:不同数据分布的语义对齐难题 (例:抽象概念“自由”与具象图像的映射) 2. **计算复杂度**:训练CLIP模型需592块V100显卡(OpenAI公开数据) 3. **知识冲突**:多源数据间的矛盾验证 (如不同医学文献对某症状的歧义描述) --- ### 四、典型应用 | 领域 | 案例 | 技术实现 | |------------|---------------------------|------------------------------| | 教育 | 物理公式3D动态演示 | 文本→3D模型生成(Nerf架构) | | 医疗 | CT影像自动诊断报告生成 | 图像特征→文本解码(GAN网络) | | 工业 | 设备异响故障分析 | 声纹识别+知识图谱检索 | --- ### 五、发展趋势 1. **神经符号系统结合**:将深度学习与规则推理融合,提升可解释性 2. **脑机接口延伸**:MIT最新研究通过fMRI信号重建视觉图像(精度达72.3%) 3. **具身智能演进**:波士顿动力机器人已实现多模态环境交互 构建此类系统需注意:需建立严格的数据伦理审查机制,特别是在生物特征等敏感数据使用场景中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值