最新算法!超创新组合预测模型!冠豪猪优化算法+双向时域卷积网络+双向门控循环单元时间序列回归预测(附matlab代码)

专题推荐论文推荐代码分享视角(点击即可跳转)

所有链接建议使用电脑端打开,手机端打开较慢

图片

程序名称:基于CPO(冠豪猪优化器)-BiTCN(双向时域卷积网络)-BiGRU(双向门控循环单元)的多变量时间序列回归预测模型

实现平台:matlab(2022以上版本)

代码简介:提出基于CPO-BiTCN-BiGRU的多变量时间序列回归预测模型,该模型可以自适应性的预测任意数量指标的时间序列,如风电负荷,电价,气象等,导入数据即可,无需任何调试。代码具有一定创新性,注释详细!

冠豪猪优化器(CPO)是2024年1月由Mohamed Abdel-Basset等人提出的一种最新的基于自然启发的元启发式算法。成果发表在SCI中科院一区TOP期刊《Knowledge-Based Systems》,创新点非常足,目前尚无相关研究成果运用在分类预测的报道!CPO模拟了冠豪猪(CP)的四种防御策略包括视觉、声音、气味和身体攻击。该算法采用了探索和开发的机制,第一和第二防御策略(即视觉和声音)代表CPO的探索性行为,而第三和第四防御策略(即气味和身体攻击)代表CPO的开发性行为。

BiTCN(双向时域卷积网络)是一种用于文本分类和序列标注任务的神经网络模型,它结合了时域卷积网络(TCN)的架构和双向模型的特点。这种模型有以下优缺点:

  1. 双向性:BiTCN结合了双向模型的特点,可以利用输入序列中的前后信息,更全面地捕捉序列中的特征。

  2. 适用于长序列:TCN的结构使得BiTCN在处理长序列时能够保持较好的性能,避免梯度消失或爆炸的问题。

  3. 网络稳定性:相比一些RNN模型,TCN具有更好的并行性,计算效率高,训练相对稳定,更容易收敛。

BiGRU(双向门控循环单元)是一种神经网络模型,结合了门控循环单元(GRU)的结构和双向模型的特点。它在处理序列数据时具有以下优缺点:

  1. 双向性:双向性使得BiGRU能够同时考虑输入序列的前后信息,更全面地捕捉序列中的特征,有助于提高模型的表现。

  2. 长期依赖性:GRU结构设计相对简单,适合处理长序列,能够有效地捕捉序列数据中的长期依赖关系。

  3. 参数较少:相较于LSTM,GRU具有更简单的结构,参数数量较少,训练效率一般较高。

将BiTCN(双向时域卷积网络)和BiGRU(双向门控循环单元)结合起来,用于时间序列预测任务,具有如下优点:

  1. 充分捕捉序列特征:BiTCN能够有效地捕捉时间序列中的局部模式和长期依赖关系,而BiGRU则更擅长捕捉序列中的长期依赖性,通过两者结合,可以更全面、准确地捕捉序列中的特征信息。

  2. 双向信息融合:BiTCN和BiGRU都具有双向结构,能够同时考虑序列数据的前后信息,有助于更好地理解和预测序列中的模式和趋势,提高模型的表现力。

  3. 较好的性能与稳定性:BiTCN和BiGRU各自在处理序列数据时都具有一定的优势,将它们结合起来可以弥补彼此的不足,提高模型的性能和稳定性,使得时间序列预测结果更加准确可靠。

  4. 应对不同时间尺度信息:BiTCN适合捕捉较短时间尺度的特征,而BiGRU可以处理长期依赖关系,结合两者可以更好地处理时间序列中不同时间尺度的信息,提高模型的适用性和泛化能力。

  5. 灵活性:BiTCN和BiGRU结合不仅可以提高模型的性能,还可以根据具体任务需求进行调整和优化,具有一定的灵活性,适用于不同类型的时间序列预测任务。

考虑到BiTCN-BiGRU模型的参数太多了,为了避免人工调参的局限性与盲目性,本代码基于CPO优化BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数四个参数提高其预测精度,减少人工调参。

代码获取方式:最新算法!超创新组合预测模型!冠豪猪优化算法+双向时域卷积网络+双向门控循环单元时间序列回归预测(附matlab代码)

专题推荐论文推荐代码分享(点击即可跳转)

图片

图片

图片

图片

图片

图片

图片
  1. 高创新,预测方向小论文有救了!霜冰优化算法+卷积神经网络+注意力机制+LSTM(附matlab代码实现)

  2. 小论文随便发,最新算法!变分模态分解+霜冰算法优化+LSTM时间序列预测(附matlab代码实现)

  3. 高创新性!区域电热冷气多能源系统+低碳经济联合需求响应+多目标优化(附matlab代码实现)

  4. 无敌创新!没有任何相关论文!融合正余弦和柯西变异的麻雀搜索优化算法+卷积神经网络+双向长短期记忆网络(附matlab代码实现)

  5. 高创新性!风光负荷、电价、碳价、故障诊断、用电模式识别等任意预测,时间序列/回归/分类预测创新性matlab代码,助力科研!

  6. 双层优化问题如何求解?什么是KKT理论?互补松弛条件如何使用?

  7. 现在研究基于“智能优化算法”的电力系统优化运行、规划和预测方法还能不能发小论文?

  8. 群智能优化算法和模态分解算法在基于深度学习模型时间序列预测中的运用(matlab代码实现

  9. 组合预测模型给你了,核主成分分析+经验模态分解+LSTM(附matlab代码实现)

  10. 近两年最新智能优化算法,高创新,可融合预测和优化模型,小论文不愁了!(附matlab代码实现)

  11. 组合创新,原创模型!多类型需求响应负荷标准化建模+共享储能(附matlab代码实现)

  12. 超创新!效果超好!开普勒优化算法+双向门控循环单元网络+卷积神经网络+注意力机制的时间序列预测算法(附matlab代码实现)

    电力系统预测和优化方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper!!!!【不断更新】

链接:百度网盘 请输入提取码

提取码:ia50

数据分析与预测高质量matlab代码【不断更新】

链接:百度网盘 请输入提取码

提取码:9jpm

各种最新智能优化算法及应用【不断更新】

链接:百度网盘 请输入提取码

提取码:ez2x

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值