所有链接建议使用电脑端打开,手机端打开较慢
程序名称:基于CPO(冠豪猪优化器)-BiTCN(双向时域卷积网络)-BiGRU(双向门控循环单元)的多变量时间序列回归预测模型
实现平台:matlab(2022以上版本)
代码简介:提出基于CPO-BiTCN-BiGRU的多变量时间序列回归预测模型,该模型可以自适应性的预测任意数量指标的时间序列,如风电负荷,电价,气象等,导入数据即可,无需任何调试。代码具有一定创新性,注释详细!
冠豪猪优化器(CPO)是2024年1月由Mohamed Abdel-Basset等人提出的一种最新的基于自然启发的元启发式算法。成果发表在SCI中科院一区TOP期刊《Knowledge-Based Systems》,创新点非常足,目前尚无相关研究成果运用在分类预测的报道!CPO模拟了冠豪猪(CP)的四种防御策略包括视觉、声音、气味和身体攻击。该算法采用了探索和开发的机制,第一和第二防御策略(即视觉和声音)代表CPO的探索性行为,而第三和第四防御策略(即气味和身体攻击)代表CPO的开发性行为。
BiTCN(双向时域卷积网络)是一种用于文本分类和序列标注任务的神经网络模型,它结合了时域卷积网络(TCN)的架构和双向模型的特点。这种模型有以下优缺点:
-
双向性:BiTCN结合了双向模型的特点,可以利用输入序列中的前后信息,更全面地捕捉序列中的特征。
-
适用于长序列:TCN的结构使得BiTCN在处理长序列时能够保持较好的性能,避免梯度消失或爆炸的问题。
-
网络稳定性:相比一些RNN模型,TCN具有更好的并行性,计算效率高,训练相对稳定,更容易收敛。
BiGRU(双向门控循环单元)是一种神经网络模型,结合了门控循环单元(GRU)的结构和双向模型的特点。它在处理序列数据时具有以下优缺点:
-
双向性:双向性使得BiGRU能够同时考虑输入序列的前后信息,更全面地捕捉序列中的特征,有助于提高模型的表现。
-
长期依赖性:GRU结构设计相对简单,适合处理长序列,能够有效地捕捉序列数据中的长期依赖关系。
-
参数较少:相较于LSTM,GRU具有更简单的结构,参数数量较少,训练效率一般较高。
将BiTCN(双向时域卷积网络)和BiGRU(双向门控循环单元)结合起来,用于时间序列预测任务,具有如下优点:
-
充分捕捉序列特征:BiTCN能够有效地捕捉时间序列中的局部模式和长期依赖关系,而BiGRU则更擅长捕捉序列中的长期依赖性,通过两者结合,可以更全面、准确地捕捉序列中的特征信息。
-
双向信息融合:BiTCN和BiGRU都具有双向结构,能够同时考虑序列数据的前后信息,有助于更好地理解和预测序列中的模式和趋势,提高模型的表现力。
-
较好的性能与稳定性:BiTCN和BiGRU各自在处理序列数据时都具有一定的优势,将它们结合起来可以弥补彼此的不足,提高模型的性能和稳定性,使得时间序列预测结果更加准确可靠。
-
应对不同时间尺度信息:BiTCN适合捕捉较短时间尺度的特征,而BiGRU可以处理长期依赖关系,结合两者可以更好地处理时间序列中不同时间尺度的信息,提高模型的适用性和泛化能力。
-
灵活性:BiTCN和BiGRU结合不仅可以提高模型的性能,还可以根据具体任务需求进行调整和优化,具有一定的灵活性,适用于不同类型的时间序列预测任务。
考虑到BiTCN-BiGRU模型的参数太多了,为了避免人工调参的局限性与盲目性,本代码基于CPO优化BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数四个参数提高其预测精度,减少人工调参。
代码获取方式:最新算法!超创新组合预测模型!冠豪猪优化算法+双向时域卷积网络+双向门控循环单元时间序列回归预测(附matlab代码)
-
无敌创新!没有任何相关论文!融合正余弦和柯西变异的麻雀搜索优化算法+卷积神经网络+双向长短期记忆网络(附matlab代码实现)
-
高创新性!风光负荷、电价、碳价、故障诊断、用电模式识别等任意预测,时间序列/回归/分类预测创新性matlab代码,助力科研!
-
超创新!效果超好!开普勒优化算法+双向门控循环单元网络+卷积神经网络+注意力机制的时间序列预测算法(附matlab代码实现)
电力系统预测和优化方向研究生必备matlab-yalmip代码!!祝您快速入门,早日发paper!!!!【不断更新】
链接:百度网盘 请输入提取码
提取码:ia50
数据分析与预测高质量matlab代码【不断更新】
链接:百度网盘 请输入提取码
提取码:9jpm
各种最新智能优化算法及应用【不断更新】
链接:百度网盘 请输入提取码
提取码:ez2x