Chapter 6 MOSFET Operation, Fabrication

Chapter 6 MOSFET Operation

前面铺垫了这么久, 终于开始讲MOS管的工作原理和特性了

积累型 Accumlation, 耗尽型 Depletion, 强反型 Strong Inversion

也就是Vgs < 0, 0<Vgs< Vth, Vgs>Vth

The Threshold Voltage

$$
V_{th}=V_{thn0}+\gamma(\sqrt{\left| 2V_{fp} \right|+V_{SB}}-\sqrt{\left| 2V_{fp} \right|})
$$

对于NMOS, Source = N, Body =P (通常是GND or Source ), 记住 VSB 增加, Vthn增加就行了, 这就是Body Effect.

对于PMOS, Source = P, Body =N (通常是VDD or Source), VBS 增加, Vthp增加, 这是Body Effect

所以这就是为什么对于low-Vth 的场景, 我们需要local tie, 也就是把Body和Source接到一起的原因, 为了降低threshold Voltage

IV Charactertics of MOSFETS

In Cadence MOSFET Region

0 ... Cutoff

1 ... linear

2 ... saturation

3 ... subthreshold

4 ... breakdown

The linear or triode region 在线性区

对于NMOS: Vgs>=Vthn, Vds<=Vgs-Vthn

$$
I_{D}=\mu_{n}C_{ox}\frac{W}{L}[(V_{GS}-V_{THN})V_{DS}-\frac{V^{2}_{DS}}{2}]
$$

对于PMOS: Vsg>=Vthp, Vsd<=Vsg-Vthp

$$
I_{D}=\mu_{p}C_{ox}\frac{W}{L}[(V_{SG}-V_{THP})V_{SD}-\frac{V^{2}_{SD}}{2}]
$$

The Saturation region 饱和区

对于NMOS: Vgs>Vthn, Vds>Vgs-Vthn

$$
I_{D}=\mu_{n}C_{ox}\frac{W}{L}(V_{GS}-V_{THN})^2[1+\lambda(V_{DS}-V_{DS,sat})]
$$

$$
V_{dsat}=V_{GS}-V_{THN}
$$

对于PMOS: Vsg>Vthp, Vsd>Vsg-Vthp

$$
I_{D}=\mu_{p}C_{ox}\frac{W}{L}(V_{SG}-V_{THP})^2[1+\lambda(V_{SD}-V_{SD,sat})]
$$

后面的lamda一项称为Channel Length Modulation, 也就是当VDS过大时, 沟道lengh会变小, 导致Ids变大, 这在模拟电路设计中电流精度的匹配尤其重要!

$$
\lambda\propto \frac{1}{L}
$$

The Subthreshould region 亚阈值区

对于NMOS: Vgs<Vthn, MOS管像一个BJT, Ids电流随着Vgs指数变化, 但是没有BJT那样大, 所以gm没有BJT大, 但是比饱和区要大

$$
I_{D}=I_{D0}\frac{W}{L}e^{\frac{(V_{GS}-V_{thn})}{nkT/q}}
$$

kT/q=26mV at room temperature, n = 1 - 1.3

Short-Channel MOSFET s

短沟道效应:

Id vs Vgs不再是平方关系, 而是线性关系了

$$
I_{D}\propto V_{GS}
$$

NBTI (Negative Bias Temperature Instability)

在PMOS中, Vsg > 0, 会造成Vth飘逸. 尤其在做HAST时, 如果输入对管采用PMOS, Vsg又有很大偏差, 会造成 Vth偏差, 造成比较器或者Op-amp的Offset变大, 不满足性能指标.对于精细比较器一定要做处理, 比如在EN=0 时, 把Gate 都tie到VDD. NMOS的NBTI不显著.

DIBL (Drain-Induced Barrier Lowering)

Dibble 效应是指 Vds加压会导致Vth降低

Chapter 7 CMOS Fabrication

annealing at high temperature: 高温退火

slurry: 泥浆

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

推敲模拟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值