MATLAB:求解移动边缘计算的任务卸载与资源调度的差分进化算法(Differential Evolution Algorithm,DE)(提供MATLAB代码)

本文探讨了在区块链网络中,如何通过优化模型对移动设备和边缘服务器间的计算任务卸载和资源分配进行管理,以最大化矿工的总利润。利用差分进化算法解决该问题,展示了随着矿工数量变化,算法在不同迭代次数下的策略结果。
摘要由CSDN通过智能技术生成

一、优化模型介绍

移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。
在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner   s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

差分进化算法(Differential Evolution Algorithm,DE)是一种全局优化算法,它基于群体的启发式搜索。每个个体对应一个解向量,DE的进化流程包括变异、杂交和选择操作。与遗传算法相比,差分进化算法的操作定义有所不同,但整体思想相似。

差分进化算法的描述如下:

  1. 初始化种群,随机生成一组解向量。
  2. 变异操作:选择三个不同的个体,通过变异公式将它们融合成一个变异解。
  3. 交叉操作:将变异解的每个参数与原解的对应参数进行比较,根据一定概率选择新解或旧解的值,形成交叉解。
  4. 选择操作:将交叉解与原解进行比较,选择较优的解作为下一次循环的解。
  5. 重复进行2-4步骤,直到满足停止条件(例如达到最大迭代次数或找到满意的解)。

差分进化算法相对于遗传算法的优势在于简单易实现,但也有很多变种和改进方法,可以根据具体情况选择适合的算法。

2.1部分MATLAB代码

close all
clear 
clc
dbstop if all error
t=1;
for NP=50:50:300
para = parametersetting(NP);
para.MaxFEs =6000;%最大迭代次数
Result(t)=Compute(NP,para);
t=t+1;
end
QQ=50:50:300;
LenG={};
StrCor={'r-','g--','b-','c-','m--','k-.','y-'};
figure
for i=1:t-1
    plot(Result(i).FitCurve,StrCor{i},'linewidth',3)
    hold on
    LenG{i}=['N=' num2str(QQ(i))];
    Data(i)=Result(i).FitCurve(end);
end
legend(LenG)
xlabel('FEs')
ylabel('Token')

figure
bar(Data)
hold on
plot(Data,'r-o','linewidth',3)
set(gca,'xtick',1:1:t-1);
set(gca,'XTickLabel',LenG)
ylabel('Token')








2.2部分结果

当矿工数量N为50 100 150 200 250 300 350时:所有矿工的利润随迭代次数的变化如下图所示
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
当矿工数量N为50 时,算法得到的策略:

1.76931848677669	0.0912416510265902
0.393107022613806	0.652116597923441
1.68565782074965	0.593101111537099
1.87474877663697	0.922749283750935
1.80294153944084	0.931208243020432
1.59123990542044	0.615525583315274
1.93927870668456	0.745430476271187
1.77993895276278	0.948975797097317
1.68470930441013	0.745430476271187
0.648880836178350	0.155628097395395
1.05271366380331	0.784940942235441
1.23678393798484	0.498340992159490
1.82279801891323	0.723855362660724
1.67506886512647	0.0342555484760038
1.52697384585180	0.408623653030679
1.71675821361176	0.864624260700662
1.71675821361176	0.842457461652081
1.77472040757559	0.673767147345452
1.71651176945394	0.430182274838501
1.19033985787297	0.876466015786696
1.60591882459269	0.521787017788869
1.77993895276278	0.963782547502325
0.571292843490372	0.864624260700662
1.95640396496904	0.514120237415129
1.65506719466672	0.238277201894579
0.457713594677412	0.840097358840396
1.76931848677669	0.183432499080464
0.885116876323250	0.615525583315274
0.896895850474097	0.745430476271187
1.99382858095468	0.248529416224313
1.29644768722785	0.938365132860369
0.343053786299250	0.826358217263717
1.28018870440873	0.603785532624272
0.727165512302094	0.371497060933191
0.325211425290635	0.929014118655349
1.19033985787297	0.914773635109472
1.59123990542044	0.715900634382916
0.771260083620532	0.591522860414380
0.975026441357290	0.273898519724456
1.84879340873085	0.962788652058157
0.809359528258383	0.957129402926651
1.67506886512647	0.559463390732159
1.71675821361176	0.231938790140441
1.64971859687635	0.430182274838501
1.77993895276278	0.704357739106932
1.55432567154579	0.922338159604118
1.29644768722785	0.606166948593322
1.28018870440873	0.917266563321944
1.48595449320346	0.410546862761352
1.75822091690737	0.0125455022665186

三、完整MATLAB代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值