智能投资与量化交易的前沿探索
©作者|Angela
来源|神州问学
一. 引言
在数字化和智能化的双重浪潮下,人工智能(AI)技术正以前所未有的速度向前发展,从医疗健康到制造业,从教育到零售,AI技术的广泛应用正在重塑各行各业的运营模式和业务逻辑,同时也深刻改变着人们的生活方式。AI技术的应用范围日益广泛,无处不在地提供着便利和服务。在这样一个科技日新月异的时代,金融行业作为国民的经济脉络和促进经济发展的重要引擎,自然成为AI技术应用的重点领域之一。金融行业是一个信息密集、数据庞大、业务复杂的领域,对于数据的处理能力和分析精度有着极高的要求。传统的金融服务模式往往依赖于大量人力和经验的积累,效率相对低下且往往难以应对瞬息万变的市场环境。而AI Agent的引入,以其智能化、自动化的特性,将为金融行业带来了全新的解决方案。
二. AI Agent在金融行业运用的原因和重要性
在瞬息万变的金融行业,各类专业角色面临的挑战纷至沓来。基金经理如何应对信息爆炸,交易员怎样迅速掌握市场脉动,运营经理又如何捕捉市场先机?传统的人力处理方式和单一的大模型解决方案已难以满足需求。此时,AI Agent 凭借其强大的实时数据处理能力和场景适应性,成为破局的关键。
AI Agent,即人工智能代理,是一种集成了深度学习模型、插件工具与执行流程的智能实体,能够自主分析情境、作出决策并执行任务。它超越了单纯的大模型范畴,通过环境感知与自我反思,展现出更为灵活和高效的任务处理能力。简单来说大模型 + 插件 + 执行流程 = Agent。通过应用 AI Agent,我们就能解决特定场景中的问题。
AI Agent 主要分为四个核心模块:Memory、Tools、Planning 和 Action。
1. Memory:AI Agent 的记忆功能分为短期与长期两部分。短期记忆聚焦于即时状态感知,支持即时决策;而长期记忆则通过数据库或专门的记忆系统储存信息,以便后续检索和利用,为后续Action提供信息支撑。
2. Tools:Tools 模块用于处理数据、分析数据、推理,和决策。Tools 让模型和外部世界进行互联互通,既能让模型感知世界,也能让模型通过利用工具来改变外部状态。在金融领域,我们主要可以赋予模型感知金融市场实时变化的能力。例如,如果要查一个基金的数据,或在某个用户相关的购买数据,就需要调用相应的查询 API,实现与外部世界的互动。
3. Planning:Planning 模块负责根据当前的目标和环境条件制定长期和短期的行动计划。这包括考虑含有不确定因素的计划制定,以及如何有效地达成设定的目标。Planning使 Agent 能够在复杂