LLM如何结合知识图谱进行RAG

图片

从RAG到GraphRAG:知识图谱如何提升大模型的检索与推理能力?

©作者|Zane

来源|神州问学

为什么需要知识图谱

在20世纪60年代末,数据库技术开始发展,在70年代数据库技术得到了迅猛的发展,成为了计算机科学的一个重要分支。在80年代时关系型数据模型就处于统治地位,而随着关系型数据库使用范围的不断扩大,也暴露出一些他始终无法解决的问题,其中最主要的是数据建模的一些缺陷和问题,以及在补数据量和多服务器上的如何进行伸缩。同时随着互联网的发展也产生了一些新的变化,而传统的关系型数据库就表现的不是很适应,而为了解决这些传统关系型数据库产生的新型数据库被称为NoSQL数据库。

NoSQL(Not Only SQl),是一类范围非常广发的数据库,他们不遵循关系型数据模型,也不使用SQL作为语言查询,而本次我们将主要关注NoSQL中的图数据库。而作为NoSQL的一种,可以看到在db-engines.com网站中图数据库从2013年开始图数据库的关注度就一直居高不下。

### 关于RAG检索增强生成、知识图谱和大型语言模型(LLM)的代码实现 #### 背景介绍 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索模块和生成模块的方法,能够有效利用外部知识库来提升生成质量。通过引入知识图谱作为外部知识源,可以进一步提高系统的语义理解和推理能力[^2]。 以下是基于Hugging Face Transformers和Haystack框架的一个简单示例,展示如何将RAG知识图谱结合起来应用于实际场景: --- #### 实现步骤概述 1. **加载预训练的语言模型** 使用Hugging Face Transformers中的`T5`或`BART`等模型作为基础生成器。 2. **集成检索模块** 利用Haystack框架搭建一个文档存储和检索系统,该系统可以从知识图谱中提取结构化数据并将其转化为自然语言形式供模型使用。 3. **融合生成与检索结果** 将检索到的相关信息输入给生成模型,从而让其具备更强的事实依据支持下的文本生产能力。 --- #### 示例代码 下面是一个简单的Python脚本,演示如何设置这样的环境以及执行基本操作: ```python from transformers import pipeline, TFAutoModelForSeq2SeqLM, AutoTokenizer from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import BM25Retriever from haystack.pipelines import ExtractiveQAPipeline # 初始化 Haystack 文档存储 document_store = InMemoryDocumentStore() document_store.write_documents([ {"content": "Graph RAG combines the power of knowledge graphs with retrieval-augmented generation."}, {"content": "Knowledge graphs provide structured data that can be used to enhance model understanding."} ]) # 设置检索器 retriever = BM25Retriever(document_store=document_store) # 加载生成模型 (这里以 T5 为例) model_name = "t5-small" generator_model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_with_rag(query): # 检索相关文档 retrieved_docs = retriever.retrieve(query=query, top_k=2) context = "\n".join([doc.content for doc in retrieved_docs]) # 构建提示词 input_text = f"question: {query} context: {context}" inputs = tokenizer(input_text, return_tensors="tf", truncation=True, padding=True) # 进行生成 outputs = generator_model.generate(inputs["input_ids"], max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer # 测试函数 if __name__ == "__main__": query = "What is Graph RAG?" result = generate_with_rag(query) print(f"Query: {query}\nAnswer: {result}") ``` 上述代码展示了如何创建一个小型的知识库,并通过BM25算法从中获取最相关的条目;之后这些条目被传递至T5模型来进行最终的回答生成过程[^3]。 --- #### 技术细节说明 - **知识图谱的作用**:在更复杂的部署环境中,可以通过像Neo4j这样的图形数据库管理大规模的关系型数据集,再经由特定接口转换成适合机器学习处理的形式。 - **性能优化建议**:对于工业级应用来说,可能还需要考虑缓存机制减少重复计算开销等问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值