在实际做RAG(RAG,Retrieval Augmented Generation,即:增强生成)系统时,经常会遇到数据安全、隐私保护等问题,此时使用本地部署的大模型和本地部署的矢量数据库时很必要的。
对一些概念的理解
以下的概念定义不严谨,主要是为了便于理解。实际上这些概念不仅适用于“文本”。
1. 嵌入(embedding)
计算机的强项是计算。在处理文本时,只有把文本转换成“数”以后才能被计算机处理,我们可以认为这个过程就是:嵌入(embedding)。
我们可以用大模型进行这种嵌入:把喂给它的文本转换成“数”。嵌入的过程参见下图:
2. 矢量数据库
在对文本做了“嵌入”以后,文本会被转换成“矢量”。
矢量通常由很多“维度”组成,比如我们常见的笛卡尔坐标:有x轴和y轴,我们可以用(x,y)来表示一个点的位置,这个矢量就是2维的。
“嵌入”的过程实际上也可以称之为“矢量化”,为了能够准确的表示文本的“特征”,通常使用大模型矢量化后的矢量有很多维。
3. RAG(Retrieval Augmented Generation)
由于大模型训练使用的数据通常不是最新的,而且也显然不可能特别全。所以通常在做一些专业领域的系统时,需要借助专业领域的知识库。
有一种有效的方式是:使用矢量数据库把专业的知识存储起来,我们可以叫它“知识库”,在进行专业知识查询时,先在“知识库”种查询关联的知识,然后再巧妙的融入到“提示词”中,喂给大模型,由大模型经过思考后返回“人性化”的答案。
这个过程就是RAG(Retrieval Augmented Generation)。
更详细的内容可以参考:[Build a Retrieval Augmented Generation (RAG) App]
使用langchain+本地lamma3.1+本地chroma实现知识问答
1. 安装依赖,在VS Code的terminal/终端中执行。
pip install --upgrade langchain langchain-community langchain-chroma
2. 嵌入和存储
做嵌入和查询时应该使用同一个大模型。如果在做嵌入和执行查询时用不同的大模型,那就不一定能查出什么了:)
from langchain.vectorstores import Chroma
from langchain.text\_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OllamaEmbeddings
from langchain\_ollama.llms import OllamaLLM
from langchain.chains import VectorDBQA
from langchain.document\_loaders import TextLoader
persist\_directory \= 'chroma\_langchain\_db\_test'
model\_name \= "llama3.1"
# 定义嵌入。在存储嵌入和查询时都需要用到此嵌入函数。
def get\_embedding():
embeddings \= OllamaEmbeddings(model=model\_name)
return embeddings
# 对文本矢量化并存储在本地
def create\_db():
# 用来加载文本文件。
# 指定文件使用tf-8编码读取,以确保正确处理非ASCII字符。
loader = TextLoader('doc/state\_of\_the\_union.txt',encoding='utf-8')
documents \= loader.load()
# 用于将长文本拆分成较小的段,便于嵌入和大模型处理。
# 每个文本块的最大长度是1000个字符,拆分的文本块之间没有重叠部分。
text\_splitter = RecursiveCharacterTextSplitter(chunk\_size=1000, chunk\_overlap=0)
texts \= text\_splitter.split\_documents(documents)
# 从文本块生成嵌入,并将嵌入存储在Chroma向量数据库中,同时设置数据库持久化路径。
vectordb = Chroma.from\_documents(documents=texts, embedding=get\_embedding(),persist\_directory=persist\_directory)
# 将数据库的当前状态写入磁盘,以便在后续重启时加载和使用。
vectordb.persist()
create\_db()
执行 Chroma.from_documents 开始执行嵌入,这个过程计算量较大,可能比较慢。
嵌入执行完毕后,会在项目文件夹中出现chroma数据库文件:
3. 查询知识
def ask(query):
# 创建大模型实例
model = OllamaLLM(model=model\_name)
# 使用本地矢量数据库创建矢量数据库实例
vectordb = Chroma(persist\_directory=persist\_directory, embedding\_function=get\_embedding())
# 处理基于向量数据库的查询回答任务。
# "stuff":意味着模型将所有的上下文一次性处理。
qa = VectorDBQA.from\_chain\_type(llm=model, chain\_type="stuff", vectorstore=vectordb)
result \= qa.run(query)
return result
query \= "What did the president say about Ketanji Brown Jackson"
r \= ask(query)
print (r)
查询结果如下图:
4. 全部代码,仅供参考:
from langchain.vectorstores import Chroma
from langchain.text\_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OllamaEmbeddings
from langchain\_ollama.llms import OllamaLLM
from langchain.chains import VectorDBQA
from langchain.document\_loaders import TextLoader
persist\_directory \= 'chroma\_langchain\_db\_test'
model\_name \= "llama3.1"
# 定义嵌入。在存储嵌入和查询时都需要用到此嵌入函数。
def get\_embedding():
embeddings \= OllamaEmbeddings(model=model\_name)
return embeddings
# 对文本矢量化并存储在本地
def create\_db():
# 用来加载文本文件。
# 指定文件使用tf-8编码读取,以确保正确处理非ASCII字符。
loader = TextLoader('doc/state\_of\_the\_union.txt',encoding='utf-8')
documents \= loader.load()
# 用于将长文本拆分成较小的段,便于嵌入和大模型处理。
# 每个文本块的最大长度是1000个字符,拆分的文本块之间没有重叠部分。
text\_splitter = RecursiveCharacterTextSplitter(chunk\_size=1000, chunk\_overlap=0)
texts \= text\_splitter.split\_documents(documents)
# 从文本块生成嵌入,并将嵌入存储在Chroma向量数据库中,同时设置数据库持久化路径。
vectordb = Chroma.from\_documents(documents=texts, embedding=get\_embedding(),persist\_directory=persist\_directory)
# 将数据库的当前状态写入磁盘,以便在后续重启时加载和使用。
vectordb.persist()
# create\_db()
def ask(query):
# 创建大模型实例
model = OllamaLLM(model=model\_name)
# 使用本地矢量数据库创建矢量数据库实例
vectordb = Chroma(persist\_directory=persist\_directory, embedding\_function=get\_embedding())
# 处理基于向量数据库的查询回答任务。
# "stuff":意味着模型将所有的上下文一次性处理。
qa = VectorDBQA.from\_chain\_type(llm=model, chain\_type="stuff", vectorstore=vectordb)
result \= qa.run(query)
return result
query \= "What did the president say about Ketanji Brown Jackson"
r \= ask(query)
print (r)
下载源代码
- [gitee]
- [github]
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓